We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern ∼ 50 per cent of the sky (20,630 deg2); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of ∼1 rad m−2. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20″ and a typical RMS sensitivity in Stokes Q or U of 18 μJy beam−1. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38 per cent of the sky. POSSUM will enable the discovery and detailed investigation of magnetized phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
The viruses associated with bats have generated significant concern; however, there is limited knowledge regarding the endoparasites that affect these mammals. This study involved the collection of seven nematode specimens (three males and four females) from the intestines of Hipposideros armiger in Shaoguan City, Guangdong, China. Next-generation sequencing was employed to obtain the mitochondrial DNA (mtDNA) genome, which was determined to be 14,130 base pairs in length. The mitochondrial genome comprised 12 protein-coding genes, 21 tRNA genes, 2 rRNA genes, and an AT-rich non-coding region. Phylogenetic analyses based on mtDNA sequences indicated that the nematode forms a sister clade to Nematodirus, exhibiting only 74% nucleotide identity. In contrast, the nuclear ITS1 gene demonstrated a high degree of nucleotide identity (98.6%–98.8%) with Durettenema guangdongense. Consequently, the parasitic nematode identified from H. armiger is likely to belong to the genus Durettenema and has been designated as Durettenema sp. 888. Furthermore, an epidemiological investigation revealed the presence of the parasitic nematode infections in H. armiger collected from Guangdong, Guangxi, and Guizhou Provinces. Given the widespread distribution of H. armiger and their tendency to inhabit areas in close proximity to human dwellings, the influence of parasite prevalence on bat population numbers and potential for human and domestic animal transmission of this pathogen warrants further investigation.
Fragmentation of a fluid body into droplets underlies many contamination and disease transmission processes where pathogens are transported in a liquid phase. An important class of such processes involves formation of a fluid ligament and its destabilization into droplets. Inertial detachment (Gilet & Bourouiba, J. R. Soc. Interface, vol. 12, 2015, 20141092) is one of these modes: upon impact on a sufficiently compliant substrate, the substrate's motion can transfer its impulse to a contaminated sessile drop residing on it. The fragmentation of the sessile drop is efficient at producing contaminated ejected droplets with little dilution. Inertial detachment, particularly from substrates of intermediate wetting, is also interesting as a fundamental fragmentation process on its own merit, involving the asymmetric stretching of the sessile drop under impulsive axial forcing with one-sided pinning due to the substrate's intermediate wetting. Our experiments show that the radius, $R_{tip}$, of the tip drop ejected become insensitive to the Bond number value for $Bo>1$. Here, $Bo$ quantifies the inertial effects via the relative axial impulsive acceleration compared with capillarity. The time, $t_{tip}$, of tip-drop breakup is also insensitive to $Bo$. Combining experiments, theory and validated numerics, we decipher the selection of $R_{tip}$ and its sensitivity to the surface-wetting and substrate foot dynamics. Using asymptotic theory in the large $Bo$ limit for which the thin-film/slender-jet approximations hold, we derive a reduced physical model that predicts $R_{tip}$ consistent with our experiments. Finally, we discuss how pathogen physical properties (e.g. wetting and buoyancy) within the sessile drop determine their distribution in the tip and secondary fragmentation droplets.
Unhealthy food environments are major drivers of obesity and diet-related diseases(1). Improving the healthiness of food environments requires a widespread organised response from governments, civil society, and industry(2). However, current actions often rely on voluntary participation by industry, such as opt-in nutrition labelling schemes, school/workplace food guidelines, and food reformulation programmes. The aim of the REFORM study is to determine the effects of the provision of tailored support to companies on their nutrition-related policies and practices, compared to food companies that are not offered the programme (the control). REFORM is a two-country, parallel cluster randomised controlled trial. 150 food companies were randomly assigned (2:1 ratio) to receive either a tailored support intervention programme or no intervention. Randomisation was stratified by country (Australia, New Zealand), industry sector (fast food, other packaged food/beverage companies), and company size. The primary outcome is the nutrient profile (measured using Health Star Rating [HSR]) of foods and drinks produced by participating companies at 24 months post-baseline. Secondary outcomes include company nutrition policies and commitments, the nutrient content (sodium, sugar, saturated fat) of products produced by participating companies, display of HSR labels, and engagement with the intervention. Eighty-three eligible intervention companies were invited to take part in the REFORM programme and 21 (25%) accepted and were enrolled. Over 100 meetings were held with company representatives between September 2021 and December 2022. Resources and tailored reports were developed for 6 touchpoints covering product composition and benchmarking, nutrition labelling, consumer insights, nutrition policies, and incentives for companies to act on nutrition. Detailed information on programme resources and preliminary 12-month findings will be presented at the conference. The REFORM programme will assess if provision of tailored support to companies on their nutrition-related policies and practices incentivises the food industry to improve their nutrition policies and actions.
A kaolin clay occurring in Carboniferous mudstone near the Jiangshan-Shaoxing deep fault in Zhejiang Province, eastern China was characterized by XRD and IR. Although the dominant mineral appeared to be kaolinite, IR also suggested the possible occurrence of nacrite. This was confirmed by forming intercalation complexes with potassium acetate and with hydrazine hydrate, both water complexes having the same characteristic spacing at 8.35 Â. Different particle size fractions of the kaolin clay were studied and the results indicated that nacrite content increased with increasing particle size. This occurrence of nacrite is consistent with previous findings of the polytype in high temperature and pressure environments.
With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the predictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state deviation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life (RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the proposed method.
To accelerate high-intensity heavy-ion beams to high energy in the booster ring (BRing) at the High-Intensity Heavy-Ion Accelerator Facility (HIAF) project, we take the typical reference particle 238U35+, which can be accelerated from an injection energy of 17 MeV/u to the maximal extraction energy of 830 MeV/u, as an example to study the basic processes of longitudinal beam dynamics, including beam capture, acceleration, and bunch merging. The voltage amplitude, the synchronous phase, and the frequency program of the RF system during the operational cycle were given, and the beam properties such as bunch length, momentum spread, longitudinal beam emittance, and beam loss were derived, firstly. Then, the beam properties under different voltage amplitude and synchronous phase errors were also studied, and the results were compared with the cases without any errors. Next, the beam properties with the injection energy fluctuation were also studied. The tolerances of the RF errors and injection energy fluctuation were dictated based on the CISP simulations. Finally, the effect of space charge at the low injection energy with different beam intensities on longitudinal emittance and beam loss was evaluated.
We use New York City (NYC) taxi data to identify trips between mutual fund offices and local firm headquarters. NYC funds overweight the stocks of local firms they visit via taxi, and firm visits are associated with superior investment performance. Firm visits are elevated prior to earnings announcements, and mutual fund trades that are associated with firm taxi visits predict earnings surprises. The results are generally stronger when fund and firm executives share educational connections. Additional tests support the conclusion that funds’ local bias and investment performance are driven by portfolio managers’ efforts and ability to actively gather material information.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
FFD (free-form deformation method) is one of the most commonly used parameterisation methods at present. It places the parameterised objects inside the control volume through coordinate system transformation, and controls the control volume through control points, thus realising the deformation control of its internal objects. Firstly, this paper systematically analyses and compares the characteristics and technical requirements of Bernstein, B-spline and NURBS (non-uniform rational b-splines) basic functions that can be adopted by FFD, and uses the minimum number of control points required to achieve the specified control effect threshold to express the control capability. Aiming at the problem of discontinuity at the right end in the actual calculation of B-spline basis function, a method of adding a small epsilon is proposed to solve it. Then, three basic functions are applied to the FFD parameterisation method, respectively, and the differences are compared from two aspects of the accurate expression of the model and the ability of deformation control. It is found that the BFFD (b-spline free-form deformation) approach owns better comprehensive performance when the control points are distributed correctly. In this paper, the BFFD method is improved, and a p-BFFD (reverse solution points based BFFD) method based on inverse solution is proposed to realise the free distribution of control points under the specified topology. Further, for the lifting body configuration, the control points of the p-BFFD method are brought closer to the airframe forming the EDGE-p-BFFD (edge constraints based p-BFFD) method. For the case in this paper, the proposed EDGE-p-BFFD method not only has fairly high parameterisation accuracy, but also reduces the expression error from 1.01E-3 to 1.25E-4, which is nearly ten times. It can also achieve effective lifting body guideline constraints, and has the ability of local deformation adapting to the configuration characteristics. In terms of the proportion of effective control points, the EDGE-p-BFFD method increases the proportion of effective control points from 36.7% to 50%, and the more control points, the more obvious the proportion increase effect. The new method also has better effect on the continuity of geometric deformation. At the same time, this paper introduces the independent deformation method of the upper and lower surfaces based on the double control body frames, which effectively avoids the deformation coupling problem of the simultaneous change of the upper and lower surfaces caused by the movement of control points in the traditional single control framework.
Visitors to zoos are a source of potential stress to certain captive-housed animals. Much research has focused on Europe and America, whereas the effect of human audiences on the behaviour of captive animals in Chinese parks has so far not been investigated. Sika deer (Cervus nippon) housed in Zhu-Yu-Wan Park, Yangzhou City, Jiangsu Province, China, were studied to determine the effect of different visitor density levels on the animals’ activity. From June 21 to December 10, 2006, and again from February 21 to July 10, 2007, 21 subjects were observed for 10 h per week for a total of 44 weeks. Continuous focal animal sampling was used to quantify behaviours, and visitor density was recorded every minute. Friedman's tests were used to examine the effects of visitor density on the behaviour of sika deer. Results showed that high visitor density was significantly related to foraging, resting, watching and ‘non-visible’ behaviours. The findings demonstrate that high numbers of visitors have an effect on the welfare of sika deer.
Antipsychotics are the mainstream treatment of delusional disorder. However, limited therapeutic effect was recognized due to side effect and lack of insight.
Objectives
This article presents a case with Ekbom’s syndrome, also known as delusional parasitosis, who has significant response with Brexpiprazole.
Methods
A 58-year-old female developed her very first episode of psychosis 3 weeks before she visited our emergency department. Delusion of spiders laying eggs and bitsy spiders crawling over her body was claimed, followed by depressed mood and insomnia. The patient denied any substance use in recent months. Examination including biochemical studies, complete blood count, vitamin, and endocrine during admission were all normal. Brain image revealed senile cortical atrophy without apparent acute infarction. Cognitive abilities screening instrument (CASI) revealed total score 75, indicating borderline cognitive function. Ophthalmologist and dermatologist were consulted, and no specific abnormality was found.
Results
Brexpiprazole 2mg was prescribed. After 3 weeks of treatment, the delusion improved with less parasitosis content. We discharged the patient, and kept following her at outpatient department with Brexpiprazole 2mg for 2 months. We tried to taper Brexpiprazole to 1mg at clinic, but her delusional parasitosis relapsed within 1 month. Therefore, we titrated the medication back to 2mg, and kept some dosage for 4 months. No more relapse of psychosis or significant movement dysfunction was observed. The total treatment course was 7 months.
Conclusions
Brexpiprazole, with its D2 partial agonism, shows impressive antipsychotic effect to Ekbom’s syndrome. Little side effect was observed in clinical practice, making Brexpiprazole a worth-trying psychopharmacological management of delusional parasitosis.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
Klebsiella pneumoniae is a common pathogen associated with nosocomial infections and is characterised serologically by capsular polysaccharide (K) and lipopolysaccharide O antigens. We surveyed a total of 348 non-duplicate K. pneumoniae clinical isolates collected over a 1-year period in a tertiary care hospital, and determined their O and K serotypes by sequencing of the wbb Y and wzi gene loci, respectively. Isolates were also screened for antimicrobial resistance and hypervirulent phenotypes; 94 (27.0%) were identified as carbapenem-resistant (CRKP) and 110 (31.6%) as hypervirulent (hvKP). isolates fell into 58 K, and six O types, with 92.0% and 94.2% typeability, respectively. The predominant K types were K14K64 (16.38%), K1 (14.66%), K2 (8.05%) and K57 (5.46%), while O1 (46%), O2a (27.9%) and O3 (11.8%) were the most common. CRKP and hvKP strains had different serotype distributions with O2a:K14K64 (41.0%) being the most frequent among CRKP, and O1:K1 (26.4%) and O1:K2 (17.3%) among hvKP strains. Serotyping by gene sequencing proved to be a useful tool to inform the clinical epidemiology of K. pneumoniae infections and provides valuable data relevant to vaccine design.
White-light continuum can be induced by the interaction of intense femtosecond laser pulses with condensed materials. By using two orthogonal polarizers, a self-induced birefringence of continuum is observed when focusing femtosecond laser pulses into bulk fused silica. That is, the generated white-light continuum is synchronously modulated anisotropically while propagating in fused silica. Time-resolved detection confirms that self-induced birefringence of continuum shows a growth and saturation feature with time evolution. By adjusting laser energy, the transmitted intensity of continuum modulated by self-induced birefringence also varies correspondingly. Morphology analysis with time evolution indicates that it is the focused femtosecond laser pulses that induce anisotropic microstructures in bulk fused silica, and the anisotropic structures at the same time modulate the generated continuum.
Flexibility is one of the important mechanical performance parameters of stent. The flexibility of tapered stents, especially self-expanding tapered stents, remains unknown. In this study, we developed a new selfexpanding tapered stent for tapered arteries and performed a numerical investigation of stent flexibility by using finite element method. The effect of stent design parameters, including taper and link space width, on stent flexibility was studied. The flexibility of the proposed stent was also compared with that of traditional cylindrical stents. Results show that the tapered stent is more flexible than the traditional cylindrical stent. Furthermore, the flexibility of the tapered stent increases with increasing stent taper and stent link space width. The increase in the stent link space width can contribute to the reduction in the peak stress. Therefore, tapered stents with high link space width will improve the stent flexibility. This work provides useful information for improvement of stent design and clinical selection.
Growth-associated protein 43 (GAP-43) was critical for initial establishment or reorganization of synaptic connections, a process thought to be disrupted in schizophrenia. Abnormal GAP-43 expression has been linked to this disorder in numerous postmortem brain studies. The purpose of this study was to investigate the involvement of the gene encoding GAP-43 in the susceptibility to schizophrenia.
Methods
We searched for genetic variants in the promoter region and 3 exons (including both UTR ends) of the GAP-43 gene using direct sequencing in a sample of Han Chinese schizophrenic patients (n = 354) and non-psychotic controls (n = 338) from Taiwan, and conducted a case-control association study.
Results
We identified 11 common SNPs in the GAP-43 gene. SNP and haplotype-based analyses showed no association with schizophrenia. Besides, we identified 4 rare variants in 4 out of 354 patients, including 1 variant located at the promoter region, 1 synonymous and 2 missense variants located at exon 2. No rare variants were found in the control subjects. Collectively, these rare variants were significantly overrepresented in the patient group (1.1% v.s 0; p value of Fisher’s exact test = 0.02), suggesting they may increase the genetic burden in schizophrenia.
Conclusion
Although the functional significance of these rare variants remained to be characterized, our study lent support to the hypothesis of multiple rare mutations in schizophrenia, and provided genetic clues to indicate the involvement of neurodevelopment defect in this disorder.
Genetic variation of the catechol-O-methyltransferase (COMT) gene has long been thought to confer susceptibility to schizophrenia because of its catalytic activity for dopamine degradation. The negative symptom is a severe form of the illness related to prefrontal hypodopaminergia. In the present study, we attempted to perform a quantitative trait test for genetic association between the COMT gene and the negative symptoms in a Chinese population.
Methods:
A total of 160 unrelated schizophrenic individuals were recruited for genetic analysis and their symptoms were assessed and scored by Positive and Negative Syndrome Scale (PANSS). The quantitative trait test was performed by the UNPHASED program to see the correlation between scored negative symptoms and some single nucleotide polymorphisms (SNPs) present in the COMT gene.
Results:
rs362204 (Del/Ins SNP) showed allelic association with four negative symptoms, including blunted affect (p=0.00008), poor rapport (p=0.00006), passive/apathetic social withdrawal (p=0.0003) and lack of spontaneity and flow of conversation (p=0.001). The rs165656(C)-rs6267(G)-rs4680 (G)-rs362204 (Del) haplotype was strongly associated with both blunted affect (p=0.0245) and poor rapport (p=0.0186).
Conclusion:
The present study suggests that COMT may etiologically contribute to the severity of negative symptoms of schizophrenia but its precise mechanism needs further investigating.