We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with chronic insomnia are characterized by alterations in default mode network and alpha oscillations, for which the medial parietal cortex (MPC) is a key node and thus a potential target for interventions.
Methods
Fifty-six adults with chronic insomnia were randomly assigned to 2 mA, alpha-frequency (10 Hz), 30 min active or sham transcranial alternating current stimulation (tACS) applied over the MPC for 10 sessions completed within two weeks, followed by 4- and 6-week visits. The connectivity of the dorsal and ventral posterior cingulate cortex (vPCC) was calculated based on resting functional MRI.
Results
For the primary outcome, the active group showed a higher response rate (≥ 50% reduction in Pittsburgh Sleep Quality Index (PSQI)) at week 6 than that of the sham group (71.4% versus 3.6%) (risk ratio 20.0, 95% confidence interval 2.9 to 139.0, p = 0.0025). For the secondary outcomes, the active therapy induced greater and sustained improvements (versus sham) in the PSQI, depression (17-item Hamilton Depression Rating Scale), anxiety (Hamilton Anxiety Rating Scale), and cognitive deficits (Perceived Deficits Questionnaire-Depression) scores. The response rates in the active group decreased at weeks 8–14 (42.9%–57.1%). Improvement in sleep was associated with connectivity between the vPCC and the superior frontal gyrus and the inferior parietal lobe, whereas vPCC-to-middle frontal gyrus connectivity was associated with cognitive benefits and vPCC-to-ventromedial prefrontal cortex connectivity was associated with alleviation in rumination.
Conclusions
Targeting the MPC with alpha-tACS appears to be an effective treatment for chronic insomnia, and vPCC connectivity represents a prognostic marker of treatment outcome.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
Species of epiphytic microbiota are closely associated with the fermentation performance of natural forage silage. This study aimed to evaluate the dynamic microbial communities, fermentation parameters, and aerobic stability of Napier grass silage from the same variety and growth period but harvested from three different regions (NGP1, NGP2, and NGP3). After 60 days of ensiling, triplicate silos were opened for sampling and testing aerobic stability. The epiphytic microbiota with higher relative abundances in fresh Napier grass (NGP1, NGP2, and NGP3) were Weissella, Enterobacter, and Lactococcus, respectively. After 60 days of ensiling, NGP3 exhibited higher fermentation quality, indicated by higher lactic acid (LA) concentration and lower pH than that of NGP1 and NGP2. The NH3–N content of all treatments was lower than 100 g/kg total nitrogen. Compared with NGP1 and NGP2 silage, NGP3 silage exhibited a sharp rise in pH and LA consumption during air exposure. After 7 days of air exposure, NGP3 had higher ethanol concentrations and pH. Ruminiclostridium_5, Pediococcus, and Lactobacillus predominated in NGP1, NGP2, and NGP3 silages, respectively, whereas Candida and Monascus predominated in air-exposed NGP3 silage. The bacterial co-occurrence networks from fresh samples to ensiling and air exposure became more complex; however, NGP3 had a higher negative correlation with co-occurrence after air exposure. Different regions had significant effects on the fermentation patterns, bacterial communities, and aerobic stability of Napier grass silage. This was mainly due to variable epiphytic microbiota. Higher fermentation quality of Napier grass silage may also result in accelerated spoilage due to air exposure. Candida and Monascus were primarily responsible for the lower dry matter recovery and higher ethanol contents and air exposure spoilage of Napier grass silage.
In order to establish a compact all-optical Thomson scattering source, experimental studies were conducted on the 45 TW Ti: sapphire laser facility. By including a steel wafer, mixed gas, and plasma mirror into a double-exit jet, several mechanisms, such as shock-assisted ionization injection, ionization injection, and driving laser reflection, were integrated into one source. So, the source of complexity was remarkably reduced. Electron bunches with central energy fluctuating from 90 to 160 MeV can be produced. Plasma mirrors were used to reflect the driving laser. The scattering of the reflected laser on the electron bunches led to the generation of X-ray photons. Through comparing the X-ray spots under different experimental conditions, it is confirmed that the X-ray photons are generated by Thomson scattering. For further application, the energy spectra and source size of the Thomson scattering source were measured. The unfolded spectrum contains a large amount of low-energy photons besides a peak near 67 keV. Through importing the electron energy spectrum into the Monte Carlo simulation code, the different contributions of the photons with small and large emitting angles can be used to explain the origin of the unfolded spectrum. The maximum photon energy extended to about 500 keV. The total photon production was 107/pulse. The FWHM source size was about 12 μm.
Supersonic gas jets generated via a conical nozzle are widely applied in the laser wakefield acceleration of electrons. The stability of the gas jet is critical to the electron injection and the reproducibility of the wakefield acceleration. Here we discussed the role of the stilling chamber in a modified converging–diverging nozzle to dissipate the turbulence and to stabilize the gas jets. By the fluid dynamics simulations and the Mach–Zehnder interferometer measurements, the instability originating from the nonlinear turbulence is studied and the mechanism to suppress the instability is proposed. Both the numerical and experimental results prove that the carefully designed nozzle with a stilling chamber is able to reduce the perturbation by more than 10% compared with a simple-conical nozzle.
Before the Omicron variant ran amok inside China in November 2022, the Chinese central government’s dynamic zero-COVID policy effectively contained the spread of the coronavirus and its variants during multiple waves of outbreaks. However, it was not without cost. This study examines the impacts of stringent lockdown interventions on urban residents’ mental health during the initial outbreak of the Omicron variant in the spring of 2022. Using survey data from 522 respondents within the same neighbourhood and a spatial quasi-experimental design, the results show that strict lockdown interventions are significantly related to higher levels of psychological distress after controlling for observed confounders and that lockdown interventions have further spillover effects on mental health for residents in adjacent residential compounds who are otherwise free. Moreover, the results show that the lack of material supplies and medical care plays a more salient role in explaining lockdown effects on psychological distress than residents’ social interaction and trust levels of COVID-19 policy. Policy and intervention implications are also discussed.
This paper presents a gait optimization method to generate the locomotion pattern for biped and discuss its stability. The main contribution of this paper is a newly proposed energy-based stability criterion, which permits the dynamic stable walking and could be straight-forwardly generalized to different locomotion scenarios and biped robots. The gait optimization problem is formulated subject to the constraints of the whole-body dynamics and kinematics. The constraints are established based on the modelling of bipedal hybrid dynamical systems. Following the whole-body modelling, the system energy is acquired and then applied to create the stability criterion. The optimization objective is also established on the system energy. The gait optimization is solved by being converted to a large-scale programming problem, where the transcription accuracy is improved via the spectral method. To further reduce the dimensionality of the large-scale problem, the whole-body dynamics is re-constructed. The generalization of the optimized gait is improved by the design of feedback control. The optimization examples demonstrate that the stability criterion naturally leads to a cyclic biped locomotion, though the periodicity was not previously imposed. Two simulation cases, level ground walking and slope walking, verify the generalization of the stability criterion and feedback control. The stability analyses are carried out by investigating the motions of centre of gravity and centre of pressure. It is revealed that if the tracked speed is above 0.3 m/s or the biped accelerates/climbs the slope, the stability criterion accomplishes the dynamic stable walking, where zero moment point criterion is not strictly complied.
An experimental investigation of the stereocamera's systematic error is carried out to optimize three-dimensional (3-D) dust observation on the HL-2A tokamak. It is found that a larger 3-D region occupied by all calibration points is able to reduce the 3-D reconstruction systematic error of the stereocamera. In addition, the 3-D reconstruction is the most accurate around the region where the calibration points are located. Based on these experimental results, the design of the stereocamera on the HL-2A tokamak is presented, and a set of practical procedures to optimize the 3-D reconstruction accuracy of the stereocamera are proposed.
It has been suggested that added sugar intake is associated with non-alcoholic fatty liver disease (NAFLD). However, previous studies only focused on sugar-sweetened beverages; the evidence for associations with total added sugars and their sources is scarce. This study aimed to examine the associations of total added sugars, their physical forms (liquid v. solid) and food sources with risk of NAFLD among adults in Tianjin, China. We used data from 15 538 participants, free of NAFLD, other liver diseases, CVD, cancer or diabetes at baseline (2013–2018 years). Added sugar intake was estimated from a validated 100-item FFQ. NAFLD was diagnosed by ultrasonography after exclusion of other causes of liver diseases. Multivariable Cox proportional hazards models were fitted to calculate hazard ratios (HR) and corresponding 95 % CI for NAFLD risk with added sugar intake. During a median follow-up of 4·2 years, 3476 incident NAFLD cases were documented. After adjusting for age, sex, BMI and its change from baseline to follow-up, lifestyle factors, personal and family medical history and overall diet quality, the multivariable HR of NAFLD risk were 1·18 (95 % CI 1·06, 1·32) for total added sugars, 1·20 (95 % CI 1·08, 1·33) for liquid added sugars and 0·96 (95 % CI 0·86, 1·07) for solid added sugars when comparing the highest quartiles of intake with the lowest quartiles of intake. In this prospective cohort of Chinese adults, higher intakes of total added sugars and liquid added sugars, but not solid added sugars, were associated with a higher risk of NAFLD.
Does temporal thought extend asymmetrically into the past and the future? Do asymmetries depend on cultural differences in temporal focus? Some studies suggest that people in Western (arguably future-focused) cultures perceive the future as being closer, more valued, and deeper than the past (a future asymmetry), while the opposite is shown in East Asian (arguably past-focused) cultures. The proposed explanations of these findings predict a negative relationship between past and future: the more we delve into the future, the less we delve into the past. Here, we report findings that pose a significant challenge to this view. We presented several tasks previously used to measure temporal asymmetry (self-continuity, time discounting, temporal distance, and temporal depth) and two measures of temporal focus to American, Spanish, Serbian, Bosniak, Croatian, Moroccan, Turkish, and Chinese participants (total N = 1,075). There was an overall future asymmetry in all tasks except for temporal distance, but the asymmetry only varied with cultural temporal focus in time discounting. Past and future held a positive (instead of negative) relation in the mind: the more we delve into the future, the more we delve into the past. Finally, the findings suggest that temporal thought has a complex underlying structure.
This paper investigates the relationship between fingers and time representations in naturalistic Chinese Sign Language (CSL). Based on a CSL Corpus (Shanghai Variant, 2016–), we offer a thorough description of finger configurations for time expressions from 63 deaf signers, including three main types: digital, numeral incorporation, and points-to-fingers. The former two were further divided into vertical and horizontal fingers according to the orientation of fingertips. The results showed that there were interconnections between finger representations, numbers, ordering, and time in CSL. Vertical fingers were mainly used to quantify time units, whereas horizontal fingers were mostly used for sequencing or ordering events, and their forms could be influenced by Chinese number characters and the vertical writing direction. Furthermore, the use of points-to-fingers (e.g., pointing to the thumb, index, or little finger) formed temporal connectives in CSL and could be patterned to put a conversation in order. Additionally, CSL adopted similar linguistic forms in sequential time and adverbs of reason (e.g., cause and effect: events that happened earlier and events that happen later). Such a cause-and-effect relationship was a special type of temporal sequence. In conclusion, fingers are essential for time representation in CSL and their forms are biologically and culturally shaped.
Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas, where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions. The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic reconnection research are presented.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Toxigenic Clostridium difficile (C. difficile) carriers represent an important source in the transmission of C. difficile infection (CDI) during hospitalisation, but its prevalence and mode in patients with hepatic cirrhosis are not well established. We investigated longitudinal changes in carriage rates and strain types of toxigenic C. difficile from admission to discharge among hepatic cirrhosis patients. Toxigenic C. difficile was detected in 104 (19.8%) of 526 hepatic cirrhosis patients on admission, and the carriage status changed in a portion of patients during hospitalisation. Approximately 56% (58/104) of patients lost the colonisation during their hospital stay. Among the remaining 48 patients who remained positive for toxigenic C. difficile, the numbers of patients who were positive at one, two, three and four isolations were 10 (55.6%), three (16.7%), two (11.1%) and three (16.7%), respectively. Twenty-eight patients retained a particular monophyletic strain at multiple isolations. The genotype most frequently identified was the same as that frequently identified in symptomatic CDI patients. A total of 25% (26/104) of patients were diagnosed with CDI during their hospital stay. Conclusions: Colonisation with toxigenic C. difficile strains occurs frequently in cirrhosis patients and is a risk factor for CDI.
The present study was undertaken to investigate the antiparasitic activity of extracellular products of Streptomyces albus. Bioactivity-guided isolation of chloroform extracts affording a compound showing potent activity. The structure of the compound was elucidated as salinomycin (SAL) by EI-MS, 1H NMR and 13C NMR. In vitro test showed that SAL has potent anti-parasitic efficacy against theronts of Ichthyophthirius multifiliis with 10 min, 1, 2, 3 and 4 h (effective concentration) EC50 (95% confidence intervals) of 2.12 (2.22–2.02), 1.93 (1.98–1.88), 1.42 (1.47–1.37), 1.35 (1.41–1.31) and 1.11 (1.21–1.01) mg L−1. In vitro antiparasitic assays revealed that SAL could be 100% effective against I. multifiliis encysted tomonts at a concentration of 8.0 mg L−1. In vivo test demonstrated that the number of I. multifiliis trophonts on Erythroculter ilishaeformis treated with SAL was markedly lower than that of control group at 10 days after exposed to theronts (P < 0.05). In the control group, 80% mortality was observed owing to heavy I. multifiliis infection at 10 days. On the other hand, only 30.0% mortality was recorded in the group treated with 8.0 mg L−1 SAL. The median lethal dose (LD50) of SAL for E. ilishaeformis was 32.9 mg L−1.
Mandarin speakers often use gestures to represent time laterally, vertically, and sagittally. Chinese Sign Language (CSL) users also exploit signs for that purpose, and can differ from the gestures of Mandarin speakers in their choices of axes and direction of sagittal movements. The effects of sign language on co-speech gestures about time were investigated by comparing spontaneous temporal gestures of late bimodal bilinguals (Mandarin learners of CSL) and non-signing Mandarin speakers. Spontaneous gestures were elicited via a wordlist definition task. In addition to effects of temporal words on temporal gestures, results showed significant effects of sign. Compared with non-signers, late bimodal bilinguals (1) produced more sagittal but fewer lateral temporal gestures; and (2) exhibited a different temporal orientation of sagittal gestures, as they were more likely to gesture past events to their back. In conclusion, bodily experience of sign language can not only impact the nature of co-speech gestures, but also spatio-motoric thinking and abstract space-time mappings.