We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The outbreak of major epidemics, such as COVID-19, has had a significant impact on supply chains. This study aimed to explore knowledge innovation in the field of emergency supply chain during pandemics with a systematic quantitative analysis.
Methods
Based on the Web of Science (WOS) Core Collection, proposing a 3-stage systematic analysis framework, and utilizing bibliometrics, Dynamic Topic Models (DTM), and regression analysis to comprehensively examine supply chain innovations triggered by pandemics.
Results
A total of 888 literature were obtained from the WOS database. There was a surge in the number of publications in recent years, indicating a new field of research on Pandemic Triggered Emergency Supply Chain (PTESC) is gradually forming. Through a 3-stage analysis, this study identifies the literature knowledge base and distribution of research hotspots in this field and predicts future research hotspots and trends mainly boil down to 3 aspects: pandemic-triggered emergency supply chain innovations in key industries, management, and technologies.
Conclusions
COVID-19 strengthened academic exchange and cooperation and promoted knowledge output in this field. This study provides an in-depth perspective on emergency supply chain research and helps researchers understand the overall landscape of the field, identifying future research directions.
Active flow control based on reinforcement learning has received much attention in recent years. Indeed, the requirement for substantial data for trial-and-error in reinforcement learning policies has posed a significant impediment to their practical application, which also serves as a limiting factor in the training of cross-case agents. This study proposes an in-context active flow control policy learning framework grounded in reinforcement learning data. A transformer-based policy improvement operator is set up to model the process of reinforcement learning as a causal sequence and autoregressively give actions with sufficiently long context on new unseen cases. In flow separation problems, this framework demonstrates the capability to successfully learn and apply efficient flow control strategies across various airfoil configurations. Compared with general reinforcement learning, this learning mode without the need for updating the network parameter has even higher efficiency. This study presents an effective novel technique in using a single transformer model to address the flow separation active flow control problem on different airfoils. Additionally, the study provides an innovative demonstration of incorporating reinforcement-learning-based flow control with aerodynamic shape optimization, leading to collective enhancement in performance. This method efficiently lessens the training burden of the new flow control policy during shape optimization, and opens up a promising avenue for interdisciplinary intelligent co-design of future vehicles.
Tryptophan (Trp) is an essential amino acid acting as a key nutrition factor regulating animal growth and development. But how Trp modulates food intake in pigs is still not well known. Here, we investigated the effect of dietary supplementation of Trp with different levels on food intake of growing pigs. The data showed that dietary Trp supplementation with the standardised ileal digestibility (SID) Trp to lysine (Lys) ratio at both 0·18 and 0·20 significantly increased the food intake by activating the expression of orexigenic gene agouti-related peptide (AgRP) and inhibiting the expression of anorexigenic gene pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART) and melanocortin receptor 4 (MC4R) in the hypothalamus. Meanwhile, the level of anorexigenic hormones appetite-regulating peptide YY (PYY) in the duodenum and serum and leptin receptor in the duodenum were also significantly decreased. Importantly, both the kynurenine and serotonin metabolic pathways were activated upon dietary Trp supplementation to downregulate MC4R expression in the hypothalamus. Further mechanistic studies revealed that the reduced MC4R expression activated the hypothalamic AMP-activated protein kinase (AMPK) pathway, which in turn inhibited the mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) activity to stimulate food intake. Together, our study unravels the orexigenic effect of dietary Trp supplementation in pigs and expands its potential application in developing nutrition intervention strategy in pig production.
We demonstrated a method to improve the output performance of a Ti:sapphire laser in the long-wavelength low-gain region with an efficient stimulated Raman scattering process. By shifting the wavelength of the high-gain-band Ti:sapphire laser to the long-wavelength low-gain region, high-performance Stokes operation was achieved in the original long-wavelength low-gain region of the Ti:sapphire laser. With the fundamental wavelength tuning from 870 to 930 nm, first-order Stokes output exceeding 2.5 W was obtained at 930–1000 nm, which was significantly higher than that directly generated by the Ti:sapphire laser, accompanied by better beam quality, shorter pulse duration and narrower linewidth. Under the pump power of 42.1 W, a maximum first-order Stokes power of 3.24 W was obtained at 960 nm, with a conversion efficiency of 7.7%. Furthermore, self-mode-locked modulations of first- and second-order Stokes generation were observed in Ti:sapphire intracavity solid Raman lasers for the first time.
Dietary restriction-influenced biological performance is found in many animal species. Pardosa pseudoannulata is a dominant spider species in agricultural fields and is important for controlling pests. In this study, three groups – a control group (CK group), a re-feeding group (RF group), and a dietary restriction group (RT group) – were used to explore development, mating, reproduction, and the expression levels of Vg (vitellogenin) and VgR (vitellogenin receptor) genes in the spider. The findings indicated that when subjected to dietary restriction, the carapace size, weight of the spiderlings, and weight of the adults exhibited a decrease. Furthermore, the preoviposition period and egg stage were observed to be prolonged, while the number of spiderlings decreased. It was also observed that re-feeding reduced cannibalism rates and extended the preoviposition period. Dietary restriction also affected the expression of the Vg-3 gene in the spider. These results will contribute to the understanding of the impact of dietary restriction in predators of pest control, as well as provide a theoretical foundation for the artificial rearing and utilisation of the dominant spider in the field.
The characterization of energetic protons generated in the ShenGuang-II UP petawatt laser interactions with foil targets has been systematically studied. The proton energy spectra and angular distributions are measured with a radiochromic film stack. It shows that the proton energy spectra have a Boltzmann distribution with temperature of about 2.8 MeV and cutoff energy of about 20 MeV. The divergence angles of protons vary from 10° to 60°, dependent on the proton energy. The proton source size and location are investigated via the proton point-projection mesh imaging. The proton virtual sources are found to locate tens to hundreds of microns in front of the foil target, depending on the proton energies. A Monte Carlo simulation estimates the diameter of the virtual proton source to be about 12 μm for the protons with energy of 16.8 MeV, which is much smaller than the laser focus size of about 50 μm. The spatial resolution of the 16.8 MeV proton imaging is quantified with the point spread function to be about 15 μm, which is consistent with the proton virtual source size. These results will be important for the users conducting experiments with the protons as a backlighting source on the ShenGuang-II UP petawatt laser.
Major epidemics have had a huge impact on the manufacturing industry. This study aimed to explore knowledge innovation in the field of emergency manufacturing during pandemics with a systematic quantitative analysis.
Methods:
Based on the Web of Science (WOS) Core Collection, the bibliometric method and the CiteSpace tool were used.
Results:
A total of 286 literature were obtained from the WOS database. During coronavirus disease (COVID-19), there was a surge in the number of publications. A new field of research on pandemic-triggered emergency manufacturing is gradually forming with accumulated research output. The analysis of the document co-citation showed how the research on pandemic situations and viruses brought emergency manufacturing into the research scope of scholars, and what attempts were made by the original scholars. Pandemic-triggered research hotspots and research trends in the post-pandemic era mainly boiled down to 3 aspects: technological innovation, material innovation, and management innovation in the field of emergency manufacturing.
Conclusions:
COVID-19 strengthened academic exchange and cooperation and promotes knowledge output in this field. This study provides an in-depth perspective for emergency manufacturing research and helps researchers realize the panorama of this field and establish future research directions.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
Menaquinone-7 (MK-7), a multipotent vitamin K2, possesses a wide range of biological activities, a precise curative effect and excellent safety. A simple and rapid LC-APCI-MS/MS method for the determination of MK-7 in human plasma with single liquid–liquid extraction (LLE) extraction and 4·5-min analysis time has been developed and validated. Four per cent bovine serum albumin (BSA) was used as surrogate matrix for standard curves and endogenous baseline subtraction. This method was reproducible and reliable and was used to analyse of MK-7 in human plasma. The endogenous circadian rhythm and bioavailability of MK-7 were investigated in two randomised single-dose, open, one-way clinical trials (Study I and Study II). A total of five healthy male subjects were enrolled in Study I and 12 healthy male subjects in Study II. Single-dose (1 mg) of MK-7 was given to each subject under fasting condition, and all eligible subjects were given a restricting VK2 diet for 4 d prior to drug administration and during the trial. The experiment results of Study I demonstrated that endogenous MK-7 has no circadian rhythm in individuals. Both studies showed MK-7 are absorbed with peak plasma concentrations at about 6 h after intake and has a very long half-life time.
Edited by
Chu-Ren Huang, The Hong Kong Polytechnic University,Yen-Hwei Lin, Michigan State University,I-Hsuan Chen, University of California, Berkeley,Yu-Yin Hsu, The Hong Kong Polytechnic University
In this chapter, we address the issues related to sentence grammaticality and acceptability. We begin with a discussion of the relationship between the two notions, and point out that despite the differences in theoretical conceptualization, the two notions, grammaticality and acceptability, are often confluent and that grammaticality is usually measured as acceptability in linguistic research. We then discuss factors beyond syntax that may influence sentence acceptability, including processing factors and semantic/pragmatic considerations. Finally, we discuss the measurement of acceptability, via either experimental methods or corpus-based analyses. To conclude, we show in this chapter how grammaticality, a seemingly purely syntactic notion, is often materialized as acceptability, which encompasses multiple linguistic modules that go beyond syntax.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
This survey examined and compared the disaster perception and preparedness of 2421 residents with and without chronic disease in Shenzhen, China.
Methods:
The participants were recruited and were asked to complete a survey in 2018.
Results:
Three types of disasters considered most likely to happen in Shenzhen were: typhoons (73.5% vs 74.9%), major transport accidents (61.5% vs 64.7%), and major fires (60.8% vs 63.0%). Only 5.9% and 5% of them, respectively, considered infectious diseases pandemics to be likely. There were significant differences between those with and without chronic disease in disaster preparedness, only a small percentage could be considered to have prepared for disaster (20.7% vs 14.5%). Logistic regression analyses showed that those aged 65 or older (odds ratio [OR] = 2.76), who had attained a Master’s degree or higher (OR = 2.0), and with chronic disease (OR = 1.38) were more prepared for disasters.
Conclusions:
Although participants with chronic disease were better prepared than those without, overall, Shenzhen residents were inadequately prepared for disasters and in need of public education.
Hubei province in China has had the most confirmed coronavirus disease 2019 (COVID-19) cases and has reported sustained transmission of the disease. Although Lu'an city is adjacent to Hubei province, its community transmission was blocked at the early stage, and the impact of the epidemic was limited. Therefore, we summarised the overall characteristics of the entire epidemic course in Lu'an to help cities with a few imported cases better contain the epidemic. A total of 69 confirmed COVID-19 cases and 11 asymptomatic carriers were identified in Lu'an during the epidemic from 12 January to 21 February 2020. Fifty-two (65.0%) cases were male, and the median age was 40 years. On admission, 56.5% of cases had a fever as the initial symptom, and pneumonia was present in 89.9% of cases. The mean serial interval and the mean duration of hospitalisation were 6.5 days (95% CI: 4.8–8.2) and 18.2 days (95% CI: 16.8–19.5), respectively. A total of 16 clusters involving 60 cases (17 first-generation cases and 43 secondary cases) were reported during the epidemic. We observed that only 18.9% (7/37) index cases resulted in community transmission during the epidemic in Lu'an, indicating that the scale of the epidemic was limited to a low level in Lu'an city. An asymptomatic carrier caused the largest cluster, involving 13 cases. Spread of COVID-19 by asymptomatic carriers represents an enormous challenge for countries responding to the pandemic.
This paper investigates the volatility in regime-switching models formulated based on the geometric Brownian motion with its drift and volatility factors randomized with Markov chains. By developing explicit formulas about occupation time of Markov chains, we analysis the difference between global volatility of this model and the volatility caused by Brownian randomness, in order to measure the volatility caused by regime-switching after justifying its existence. Utilizing this structure of volatility, we optimize the methods of volatility parameters estimation.
As China implements the voluntary vaccination programme of one-dose of varicella vaccine (VarV) for decades, robust estimates of the impact of voluntary vaccination era on epidemiology of varicella are needed. We estimated the vaccination coverage (VC) of VarV by using surveillance data on immunisation. The descriptive epidemiological method was used to describe the changing epidemiology of varicella from 2007 to 2018. The screening method was used to estimate the vaccine effectiveness (VE) of VarV. The overall VC for VarV was 71.7%, ranged from 47.7% to 79.5% among 2008–2017 birth cohorts. In total, 16 660 varicella cases were reported during 2007–2018, the incidence increased from 10.0 cases per 100 000 population in 2007 to 65.2 cases per 100 000 population in 2018. A shift in age group of varicella was observed since 2012, with the age increased from 5–9 years to 10–14 years. The overall VE was 79.9%, and the VE increased from 60.1% in 2008 birth cohort to 96.2% in 2017 birth cohort. We found that the overall VE for VarV is moderate, but appears highly effective within 5 years after vaccination. In addition, a shift varicella infection to older ages has occurred at the long-term moderate level VC of one-dose VarV. Therefore, to contain the incidence of varicella and prevent any potential shift to older ages, the introduction of VarV into routine immunisation programme is likely needed in Lu'an.
To investigate whether implementation of a universal salt iodization (USI) programme has sufficient effects on pregnant women in Chongqing, the present study evaluated the iodine nutritional status of pregnant women living in Chongqing by spot urinary iodine concentration (UIC), to provide scientific suggestions to better meet the specific iodine needs of this vulnerable group.
Design:
Cross-sectional design.
Setting:
A random spot urine sample and household table salt sample were provided by each participant.
Participants:
A total of 2607 pregnant women from twenty-six of thirty-nine districts/counties in Chongqing participated.
Results:
The overall median UIC of pregnant women was 171·80 μg/l (interquartile range (IQR) = 113·85–247·00 μg/l) and 40·97 % (n 1057) of participants were iodine insufficient. The median iodine in table salt samples was 25·40 mg/kg (IQR = 23·10–28·30 mg/kg); 93·26 % (n 2406) of samples examined were found to be adequately iodized. Iodine nutritional status was not significantly different according to table salt iodization category. Trimester was identified to be statistically associated with UIC (P < 0·01). Seven districts/counties had median UIC below 150 μg/l and one district had median UIC of 277·40 μg/l.
Conclusions:
The USI programme in Chongqing prevents iodine deficiency generally, but does not maintain iodine status within adequate and recommended ranges throughout pregnancy. Usage of non-iodized or unqualified iodized salt and the slight change of dietary habits of iodized salt in Chongqing may present a substantial challenge to fight iodine-deficiency disorders; more efforts are needed to ensure adequate iodine intake during pregnancy besides the USI programme.
Bismuth (Bi)-based photocatalytic materials are widely used in the field of photocatalytic degradation of wastewater. In this study, β-Bi2O3/BiOBr heterojunction photocatalysts were prepared by an in situ chemical transformation method. BiOBr molecules are arrayed to cross each other to form a pore around β-Bi2O3. The prepared photocatalyst had a large specific surface area and excellent adsorption and photocatalytic properties. The β-Bi2O3/BiOBr with a molecular ratio of 11.1% had the highest catalytic activity. The result of a degradation experiment, performed with Rhodamine B (RhB) as the target pollutant, revealed that the degradation rate reached 99.85% after 25 min under visible light irradiation. The pore structure can adsorb contaminants and the heterojunction facilitates the separation of photogenerated electron–hole pairs to enhance the photocatalytic properties. The high adsorption performance and heterojunction achieved higher photocatalytic efficiency. This semiconductor photocatalyst with high adsorption performance provides a new approach to control water pollution.
Geochronological, major and trace element, and Sr–Nd–Hf isotopic data are reported for the monzonitic rocks of the Fushan pluton in the Taihang Mountains, central North China Craton, in order to investigate their sources, petrogenesis and tectonic implications. Zircon U–Pb dating results reveal that the Fushan pluton was emplaced during the Early Cretaceous (∼126–124 Ma). The monzonites and quartz monzonites are mainly characterized by calc-alkaline and magnesian features and display light rare earth element (LREE) enrichment and flat heavy REE (HREE) patterns with slightly positive Eu anomalies. They have similar whole-rock initial 87Sr/86Sr ratios (0.70653–0.70819), εNd(t) values (−13.6 to −18.6) and zircon εHf(t) values (−21.8 to −17.3). The primary magma of the Fushan pluton was derived from the partial melting of a spinel-facies amphibole-bearing ancient enriched lithospheric mantle. The monzonitic rocks also have high Ba–Sr and low Y and Yb contents, with high Sr/Y and La/Yb ratios. These geochemical features of monzonitic rocks are not only inherited from the magma source but also significantly enhanced by crystal fractionation during magmatic evolution; e.g. hornblende fractionation increased the Ba–Sr concentrations and Sr/Y ratios. During the Early Cretaceous, the slab sinking and roll-back of the Palaeo-Pacific Plate could have created an ancient big mantle wedge beneath East Asia and induced a lithospheric extensional process in the central North China Craton within an intracontinental setting.
A series of metal oxides (MnFeOx, MnCrOx, MnTiOx, and MnFeTiOx) supported on attapulgite (ATP) were synthesized by coprecipitation for the low-temperature selective catalytic reduction (SCR) of NOx with NH3. Then, they were subjected to appropriate characterizations for their properties (XRD, TEM, BET, XPS, etc.). The catalytic activity of MnFeTiOx/ATP catalyst was over 95% NOx conversion within a wide temperature window between of 175 and 300 °C, and 88% N2 selectivity. Moreover, MnFeTiOx/ATP presented excellent potassium resistance relative to the traditional V–W–Ti catalyst, and its denitration performance was significantly improved. The NOx conversion rate could be restored to nearly 90% at 210 °C after removing potassium via washing of K–MnFeTiOx/ATP. In addition, the MnFeTiOx/ATP showed better SO2 resistance and stability than the traditional V–W–Ti catalyst. Therefore, the MnFeTiOx/ATP catalyst has been proved to have broad prospects in NH3-SCR.
Considering the nonlocal small-scale effect and surface effect, we perform the size-dependent vibration analysis of carbon nanotube (CNT). The modified governing equations for CNT’s vibration behaviors are derived by using the nonlocal Euler–Bernoulli and Timoshenko beam models, together with the consideration of surface tension and surface elasticity. According to the numerical experiments, both small-scale effect and surface effect make a substantial difference. For flexural vibration, size effect for CNT’s vibration behaviors weakens with the increase of its diameter, but strengthens with the increase of the length–diameter ratio; for shear vibration with constant length–diameter ratio, a nonlinear correlation between size effect and CNT’s diameter exists, suggesting that there is a typical diameter for CNTs, which corresponds to the “strongest” size effect. In addition, the effects of elastic substrate modulus, temperature change, and axial preloading on the vibration behaviors and their size-dependence are analyzed, respectively.