We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Limited longitudinal research examining developmental changes in visuospatial working memory (WM) among children and adolescents with autism spectrum disorder (ASD) has prompted our investigation.
Methods
We assessed 123 autistic children and adolescents and 145 typically developing controls (TDC) using the Cambridge Neuropsychological Test Automated Battery at baseline (Time 1 [mean age ± SD]: ASD: 13.04 ± 2.86; TDC: 11.53 ± 2.81) and 2–9 years later (Time 2: ASD: 18.08 ± 3.17; TDC: 16.41 ± 3.09) to measure changes of visuospatial (working) memory over time. The linear mixed model was used to compare the differences between ASD and TDC and estimate the effect of changes over time, age, ASD diagnosis, and interactions of Time×Age×ASD. The overall Age×ASD effect was calculated in the spline regression.
Results
Autistic children and adolescents exhibited significantly poorer performance on all spatial tasks and some visual tasks than their TDC counterparts at Time 1 and Time 2, after adjusting for sex, age, attention deficit/hyperactivity disorder (ADHD), and full-scale intelligence quotient. There was an overall improvement from Time 1 to Time 2 across all tasks with significant Age×Time interactions. Significant Age×ASD interactions were observed in the delayed matching to sample, pattern recognition memory (PRM), spatial span (SSP), and spatial working memory (SWM) tasks with no significant Time×ASD interactions. In the quadratic nonlinear model, Age×ASD interactions were significant in PRM and SSP.
Conclusion
Despite significant improvements during the follow-up period, autistic children and adolescents continue to experience persistent deficits in SWM, with a weaker age-related improvement in visuospatial WM than TDC.
Social scientists are paying attention to the role that knowledge plays in economic phenomena. This focus on knowledge has led to exploring two challenges: first, its governance to reap positive externalities and solve social dilemmas, and second, how we can craft institutions to match the intangible nature of ideas with adequate property rules. This article contributes by elaborating on the different knowledge property regimes and the elements contributing to their classification. This paper first taxonomises knowledge governance regimes based on Ostrom’s work on institutional analysis. Second, it examines why governance structures for managing knowledge production vary across industries, according to (1) the characteristics of knowledge, (2) the attributes of the organisations, and (3) the different rules-in-use to enforce property rights. This is the first study at the intersection of institutional analysis and political economy that highlights the knowledge features, incentive structures, and mechanisms undergirding knowledge governance in different property regimes.
The vitamin K (VK) levels vary greatly among different populations and in different regions. Currently, there is a lack of reference intervals for VK levels in healthy individuals, The aim of this study is to establish and validate the reference intervals of serum vitamin K1 (VK1) and vitamin K2 (VK2, specifically including menaquinone-4 (MK4) and menaquinone-7 (MK7)) levels in some healthy populations in Beijing. Serum VK1, MK4, and MK7 were firstly measured by high-performance liquid chromatography and mass spectrometry in 434 subjects. The reference intervals for three indicators were established by calculating the data of 2.5 and 97.5 percentiles. Finally, preliminary clinical validation was conducted on 60 apparent healthy individuals undergoing physical examination. In the young, middle-aged, and elderly groups, the reference intervals of VK1 were 0.180 ng/mL ∼ 1.494 ng/mL, 0.247 ng/mL ∼ 1.446 ng/mL, and 0.167 ng/mL ∼ 1.445 ng/mL, respectively. The reference intervals of MK4 were 0.009 ng/mL ∼ 0.115 ng/mL, 0.002 ng/mL ∼ 0.103 ng/mL, and 0.003 ng/mL ∼ 0.106 ng/mL, respectively. The reference intervals of MK7 were 0.169 ng/mL ∼ 0.881 ng/mL, 0.238 ng/mL ∼ 0.936 ng/mL, and 0.213 ng/mL ∼ 1.012 ng/mL, respectively. The reference intervals had been validated by the samples of healthy individuals for physical examination. In conclusion, the reference intervals of VK established in this study with different age groups have certain clinical applicability, providing data support for further multicentre studies.
Differences in social behaviours are common in young people with neurodevelopmental conditions (NDCs). Recent research challenges the long-standing hypothesis that difficulties in social cognition explain social behaviour differences.
Aims
We examined how difficulties regulating one's behaviour, emotions and thoughts to adapt to environmental demands (i.e. dysregulation), alongside social cognition, explain social behaviours across neurodiverse young people.
Method
We analysed cross-sectional behavioural and cognitive data of 646 6- to 18-year-old typically developing young people and those with NDCs from the Province of Ontario Neurodevelopmental Network. Social behaviours and dysregulation were measured by the caregiver-reported Adaptive Behavior Assessment System Social domain and Child Behavior Checklist Dysregulation Profile, respectively. Social cognition was assessed by the Neuropsychological Assessment Affect-Recognition and Theory-of-Mind, Reading the Mind in the Eyes Test, and Sandbox continuous false-belief task scores. We split the sample into training (n = 324) and test (n = 322) sets. We investigated how social cognition and dysregulation explained social behaviours through principal component regression and hierarchical regression in the training set. We tested social cognition-by-dysregulation interactions, and whether dysregulation mediated the social cognition–social behaviours association. We assessed model fits in the test set.
Results
Two social cognition components adequately explained social behaviours (13.88%). Lower dysregulation further explained better social behaviours (β = −0.163, 95% CI −0.191 to −0.134). Social cognition-by-dysregulation interaction was non-significant (β = −0.001, 95% CI −0.023 to 0.021). Dysregulation partially mediated the social cognition–social behaviours association (total effect: 0.544, 95% CI 0.370–0.695). Findings were replicated in the test set.
Conclusions
Self-regulation, beyond social cognition, substantially explains social behaviours across neurodiverse young people.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Peripherally inserted central catheters (PICC) and midline catheters (MC) are widely used for intravenous infusions in oncology and critically ill patients. However, controversy remains regarding which method is superior. This meta-analysis systematically compares the safety differences between these 2 methods of intravenous catheterization.
Methods:
Eligible studies comparing PICC and MC were identified through searches in 6 databases. Thrombosis is the primary endpoint, while secondary endpoints include other complications, cost, and satisfaction rate.
Results:
Fourteen studies with 20,675 patients were analyzed. Based on patient data, the MC group exhibited higher rates of catheter-related superficial vein thrombosis (SVT) (risk ratio [RR]: 0.42 [0.28, 0.64]), infiltrations (RR: 0.27 [0.12, 0.62]), and leaks (RR: 0.16 [0.05, 0.53]). In contrast, the PICC group had more catheter-related bloodstream infections (RR: 1.95 [1.15, 3.32]). Considering catheter days, the MC group showed increased total complications (RR: 0.51 [0.26, 0.99]), catheter-related thrombosis (deep vein thrombosis [DVT]+SVT) (RR: 0.41 [0.18, 0.95]), and leaks (RR: 0.17 [0.05, 0.64]). In the PICC group, the top 3 complications were catheter occlusions (20 per 1,000 catheter days [CDs]), pain (15 per 1,000 CDs), and phlebitis (11 per 1,000 CDs); for the MC group, they were leaks (33 per 1,000 CDs), premature removals (22 per 1,000 CDs), and catheter-related DVT (22 per 1,000 CDs). Additionally, the PICC group had higher dissatisfaction rates (RR: 4.77 [2.33, 9.77]) and increased costs.
Conclusions:
Compared to MC, PICC appears to be a safer intravenous catheterization option for adult patients, exhibiting fewer complications. However, the higher associated costs and lower satisfaction rates of PICC warrant serious attention.
The influence of the SNP rs174575 (C/G) within the fatty acid desaturase 2 gene on the levels of long-chain PUFA was determined through statistical meta-analysis. Six databases were searched to retrieve the relevant literature. Original data were analysed using Stata 17·0, encompassing summary statistics, tests for heterogeneity, assessment of publication bias, subgroup analysis and sensitivity analysis. A total of ten studies were identified and grouped into twelve trials. Our results showed that individuals who carried the minor G allele of rs174575 had significantly higher dihomo-γ-linolenic acid levels (P = 0·005) and lower arachidonic acid levels (P = 0·033) than individuals who were homozygous for the major allele. The subgroup analysis revealed that the G-allele carriers of rs174575 were significantly positively correlated with linoleic acid (P = 0·002) and dihomo-γ-linolenic acid (P < 0·001) and negatively correlated with arachidonic acid (P = 0·004) in the European populations group. This particular SNP showed a potential association with higher concentrations of dihomo-γ-linolenic acid (P = 0·050) and lower concentrations of arachidonic acid (P = 0·030) within the breast milk group. This meta-analysis has been registered in the PROSPERO database (ID: CRD42023470562).
Thanks to its real-time computation efficiency, deep reinforcement learning (DRL) has been widely applied in motion planning for mobile robots. In DRL-based methods, a DRL model computes an action for a robot based on the states of its surrounding obstacles, including other robots that may communicate with it. These methods always assume that the environment is attack-free and the obtained obstacles’ states are reliable. However, in the real world, a robot may suffer from obstacle localization attacks (OLAs), such as sensor attacks, communication attacks, and remote-control attacks, which cause the robot to retrieve inaccurate positions of the surrounding obstacles. In this paper, we propose a robust motion planning method ObsGAN-DRL, integrating a generative adversarial network (GAN) into DRL models to mitigate OLAs in the environment. First, ObsGAN-DRL learns a generator based on the GAN model to compute the approximation of obstacles’ accurate positions in benign and attack scenarios. Therefore, no detectors are required for ObsGAN-DRL. Second, by using the approximation positions of the surrounding obstacles, ObsGAN-DRL can leverage the state-of-the-art DRL methods to compute collision-free motion commands (e.g., velocity) efficiently. Comprehensive experiments show that ObsGAN-DRL can mitigate OLAs effectively and guarantee safety. We also demonstrate the generalization of ObsGAN-DRL.
The right inferior frontal gyrus (RIFG) is a potential beneficial brain stimulation target for autism. This randomized, double-blind, two-arm, parallel-group, sham-controlled clinical trial assessed the efficacy of intermittent theta burst stimulation (iTBS) over the RIFG in reducing autistic symptoms (NCT04987749).
Methods
Conducted at a single medical center, the trial enrolled 60 intellectually able autistic individuals (aged 8–30 years; 30 active iTBS). The intervention comprised 16 sessions (two stimulations per week for eight weeks) of neuro-navigated iTBS or sham over the RIFG. Fifty-seven participants (28 active) completed the intervention and assessments at Week 8 (the primary endpoint) and follow-up at Week 12.
Results
Autistic symptoms (primary outcome) based on the Social Responsiveness Scale decreased in both groups (significant time effect), but there was no significant difference between groups (null time-by-treatment interaction). Likewise, there was no significant between-group difference in changes in repetitive behaviors and exploratory outcomes of adaptive function and emotion dysregulation. Changes in social cognition (secondary outcome) differed between groups in feeling scores on the Frith-Happe Animations (Week 8, p = 0.026; Week 12, p = 0.025). Post-hoc analysis showed that the active group improved better on this social cognition than the sham group. Dropout rates did not vary between groups; the most common adverse event in both groups was local pain. Notably, our findings would not survive stringent multiple comparison corrections.
Conclusions
Our findings suggest that iTBS over the RIFG is not different from sham in reducing autistic symptoms and emotion dysregulation. Nonetheless, RIFG iTBS may improve social cognition of mentalizing others' feelings in autistic individuals.
A negative pressure wall-climbing robot is a special robot for climbing vertical walls, which is widely used in construction, petrochemicals, nuclear energy, shipbuilding, and other industries. The mobility and adhesion of the wheel-track wall-climbing robot with steering-straight mode are significantly decreased on the cylindrical wall, especially during steering. The reason is that the suction chamber may separate from the wall and the required driving force for movement increases, during steering. In this paper, a negative pressure wall-climbing robot with omnidirectional movement mode is developed. By introducing a compliant adjusting suction mechanism and omni-belt wheels, an omnidirectional movement mode is formed instead of the steering-straight mode, and the performances of adhesion and mobility are improved. We establish the safety adhesion model for the robot on a cylindrical wall and obtain the safety adhesion forces. We designed and manufactured an experimental prototype based on the analysis. Experiments showed that the robot has the ability of full maneuverability in cylindrical walls.
Trauma is a significant health issue that not only leads to immediate death in many cases but also causes severe complications, such as sepsis, thrombosis, haemorrhage, acute respiratory distress syndrome and traumatic brain injury, among trauma patients. Target protein identification technology is a vital technique in the field of biomedical research, enabling the study of biomolecular interactions, drug discovery and disease treatment. It plays a crucial role in identifying key protein targets associated with specific diseases or biological processes, facilitating further research, drug design and the development of treatment strategies. The application of target protein technology in biomarker detection enables the timely identification of newly emerging infections and complications in trauma patients, facilitating expeditious medical interventions and leading to reduced post-trauma mortality rates and improved patient prognoses. This review provides an overview of the current applications of target protein identification technology in trauma-related complications and provides a brief overview of the current target protein identification technology, with the aim of reducing post-trauma mortality, improving diagnostic efficiency and prognostic outcomes for patients.
Motivated by practical applications of inspection and maintenance, we have developed a wall-climbing robot with passive compliant mechanisms that can autonomously adapt to curved surfaces. At first, this paper presents two failure modes of the traditional wall-climbing robot on the variable curvature wall surface and further introduces the designed passive compliant wall-climbing robot in detail. Then, the motion mechanism of the passive compliant wall-climbing robot on the curved surface is analyzed from stable adsorption conditions, parameter design process, and force analysis. At last, a series of experiments have been carried out on load capability and curved surface adaptability based on a developed principle prototype. The experimental results indicated that the wall-climbing robot with passive compliant mechanisms can effectively promote both adsorption stability and adaptability to variable curvatures.
This study assessed the efficacy of ThinPrep cytologic test and human papillomavirus (HPV) co-test in cervical cancer screening during pregnancy. A cohort of 8,712 pregnant women from Ren Ji Hospital participated in the study. Among them, 601 (6.90%) tested positive for high-risk HPV (HR-HPV) and 38 (0.44%) exhibited abnormal cytology results (ASCUS+). Following positive HR-HPV findings, 423 patients underwent colposcopy, and 114 individuals suspected of having high-grade squamous intraepithelial lesion and cervical cancer (HSIL+) underwent cervical biopsy. Histological examination revealed 60 cases of normal pathology (52.63%), 35 cases of low‐grade squamous intraepithelial lesion (30.70%), 17 cases of HSIL (14.91%), and 2 cases of cervical cancer (1.75%). The incidence of HSIL+ in HPV 16/18 group was significantly higher than that in non-HPV16/18 group (10.53% vs. 6.14%, P < 0.05). Subsequent evaluation of the clinical performance of cytology alone, primary HPV screening, and co-testing for HSIL+ detection revealed that the HSIL+ detection rate was lowest with cytology alone. These findings suggest that HPV testing, either alone or combined with cytology, presents an efficient screening strategy for pregnant women, underscoring the potential for improved sensitivity in cervical cancer screening during pregnancy. The significantly higher incidence of HSIL+ in the HPV16/18 group emphasizes the importance of genotype-specific considerations.
Injection of CaCl2 and Na2SiO3 solutions into clay suspensions during electroosmosis often improves the cohesive strength of clays near the anode and cathode, whereas the cohesive strength of clays between the electrodes remains weak. Although the main improvement mechanism for the cohesive strength of clays near the cathode was demonstrated to be a pozzolanic reaction (formation of calcium silicate hydrate cement), the mechanism of improved cohesive strength near the anode is still not understood. The objective of the present study was to investigate the mechanism for the improvement of cohesive strength near the anode and, thus, make it possible to determine a way to enhance the range in improvement using kaolinite as the test clay. The test was performed by first injecting CaCl2 solution during electroosmosis until the optimum volume of CaCl2 was attained. This was followed by treatment with Na2SiO3 solution for different lengths of time. The results indicate that the anode region after treatment was acidic (pH = 4) because the electrolysis of water causes acidification near the anode. As Na2SiO3 solution was injected through the anode, the mechanism of cohesive strength improvement of the treated clay near the anode was attributed to the silicic acid polymerization effect provided by the Na2SiO3 solution. The silicic acid may link the clay particles together to form a gel network in a low pH environment. The clay gel network structure developed rigidity as the water content was reduced. In addition, as the volume of injected Na2SiO3 solution was increased, the cohesive strength near the anode also increased.
Non-suicidal self-injury (NSSI) is prevalent in major depressive disorder (MDD) during adolescence, but the underlying neural mechanisms are unclear. This study aimed to investigate microstructural abnormalities in the cingulum bundle associated with NSSI and its clinical characteristics.
Methods
130 individuals completed the study, including 35 healthy controls, 47 MDD patients with NSSI, and 48 MDD patients without NSSI. We used tract-based spatial statistics (TBSS) with a region of interest (ROI) analysis to compare the fractional anisotropy (FA) of the cingulum bundle across the three groups. receiver-operating characteristics (ROC) analysis was employed to evaluate the ability of the difficulties with emotion regulation (DERS) score and mean FA of the cingulum to differentiate between the groups.
Results
MDD patients with NSSI showed reduced cingulum integrity in the left dorsal cingulum compared to MDD patients without NSSI and healthy controls. The severity of NSSI was negatively associated with cingulum integrity (r = −0.344, p = 0.005). Combining cingulum integrity and DERS scores allowed for successful differentiation between MDD patients with and without NSSI, achieving a sensitivity of 70% and specificity of 83%.
Conclusions
Our study highlights the role of the cingulum bundle in the development of NSSI in adolescents with MDD. The findings support a frontolimbic theory of emotion regulation and suggest that cingulum integrity and DERS scores may serve as potential early diagnostic tools for identifying MDD patients with NSSI.
We explored the transmission mechanisms of corporate fraud and its punishments within social network communities. Using fraud triangle theory and trust triangle theory, we hypothesize four transmitting channels of how fraud commission and detection are affected by peers’ fraud and punishment. Based on Chinese listed corporations from 2008 to 2018, we first construct and detect interlocked social network communities with a community-detecting algorithm, and then examine hypotheses using a bivariate probit model with partial observability. Our findings indicate that peer-concealing and -hinting effects exist within social network communities. The peer-concealing effect decreases the likelihood of being detected when committing fraud, for those with more and closer fraudulent peers. The peer-hinting effect increases the likelihood of being detected when committing fraud, for those with more and closer punished peers. There is no evidence to support peer-contagion and vicarious-punishment effects. Thus, an improved understanding of the transmission mechanism of corporate fraud commission and detection within communities is provided to prevent and detect corporate fraud. In addition, stakeholders and regulators should be aware of the deviant subculture and social distancing in social network communities.
Straightplasma channels are widely used to guide relativistic intense laser pulses over several Rayleigh lengths for laser wakefield acceleration. Recently, a curved plasma channel with gradually varied curvature was suggested to guide a fresh intense laser pulse and merge it into a straight channel for staged wakefield acceleration [Phys. Rev. Lett. 120, 154801 (2018)]. In this work, we report the generation of such a curved plasma channel from a discharged capillary. Both longitudinal and transverse density distributions of the plasma inside the channel were diagnosed by analyzing the discharging spectroscopy. Effects of the gas-filling mode, back pressure and discharging voltage on the plasma density distribution inside the specially designed capillary are studied. Experiments show that a longitudinally uniform and transversely parabolic plasma channel with a maximum channel depth of 47.5 μm and length of 3 cm can be produced, which is temporally stable enough for laser guiding. Using such a plasma channel, a laser pulse with duration of 30 fs has been successfully guided along the channel with the propagation direction bent by 10.4°.