We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Discover the principles of wireless power transfer for unmanned aerial vehicles, from theoretical modelling to practical applications. This essential guide provides a complete technical perspective and hands-on experience. It combines in-depth theoretical models, such as T-models and M-models, with practical system design, including wireless charging system construction. It presents systematic solutions to real-world challenges in UAV wireless charging, such as mutual inductance disturbances and lightweight units. Providing the resources to tackle complex industry problems this book covers the latest technological insights including advanced control methods, such as PT-symmetric WPT system control schemes and charging range extension techniques. Ideal for professional engineers, designers, and researchers, it provides the tools needed to innovate in UAV technology and power systems. Whether you're developing new systems or optimizing existing ones, this comprehensive resource delivers the insights and techniques to drive progress in wireless power transfer for unmanned aircraft.
Chinese spelling correction has achieved significant progress, but critical challenges remain, especially in handling visually and phonetically similar errors within complex syntactic structures. This paper introduces a novel approach combining a Long Short-Term Memory Network (LSTM)-enhanced Transformer for error detection and Bidirectional Encoder Representations from Transformers (BERT)-based correction with a dynamic adaptive weighting scheme. Transformer uses global attention mechanism to capture dependencies between any two positions in the input sequence. By processing each token in the sequence recursively, LSTM is able to more finely capture local context and sequential information within the sequence. Based on adaptive weighting coefficient, weights of multi-task learning are automatically adjusted to help the model better balance the learning process between the detection and correction network, enabling it to converge faster and achieve higher precision. Comprehensive evaluations demonstrate improved performance over existing baselines, particularly in addressing complex error patterns.
This article is concerned with the spreading speed and traveling waves of a lattice prey–predator system with non-local diffusion in a periodic habitat. With the help of an associated scalar lattice equation, we derive the invasion speed for the predator. More specifically, when the dispersal kernel of the predator is exponentially bounded, the invasion speed is finite and can be characterized in terms of principal eigenvalues; while the dispersal kernel is algebraically decaying, the invasion speed is infinite and the accelerated spreading rate is obtained. Furthermore, the existence and non-existence of traveling waves connecting the semi-equilibrium point to a uniformly persistent state are established.
Eotetranychus kankitus is an important pest on several agricultural crops, and its resistance to pesticides has promoted the exploration of biological control strategies. Beauveria bassiana and Neoseiulus barkeri have been identified as potential agents for suppressing spider mites. This study aimed to investigate the pathogenicity of B. bassiana on E. kankitus and its compatibility with N. barkeri. Results showed that among the five tested strains of B. bassiana, Bb025 exhibited the highest level of pathogenicity on E. kankitus. Higher application rates (1 × 108 conidia/mL) of Bb025 led to a higher mortality rate of E. kankitus (90.402%), but also resulted in a 15.036% mortality of N. barkeri. Furthermore, preference response tests indicated that both E. kankitus and N. barkeri actively avoided plants sprayed with Bb025 compared to the control group that was sprayed with Tween-80. In a no-choice test, we observed that N. barkeri actively attacked Bb025-treated E. kankitus with no adverse effect on its predatory capacities. Furthermore, N. barkeri laid more eggs when fed on Bb025-treated E. kankitus compared to Tween-80-treated E. kankitus, but the subsequent generation of surviving individuals fed on Bb025-treated E. kankitus was reduced. These findings demonstrate that the Bb025 strain of B. bassiana is highly virulent against E. kankitus while causing less harm to N. barkeri. Consequently, a promising strategy for controlling E. kankitus could involve the sequential utilisation of Bb025 and N. barkeri at appropriate intervals.
Demoralization isa common psychological problem in cancer patients. The purpose of this study is to systematically evaluate the correlated factors of demoralization among cancer patients. We also summarized the available evidence, effect estimates, and the strength of statistical associations between demoralization and its associated factors.
Methods
We systematically searched PubMed, Web of Science, CINAHL, Embase, the Cochrane Library, PsycINFO, and 2 electronic databases to identify studies published up to October 2023 with data on the correlates of demoralization. Two researchers independently reviewed references, extracted data, and assessed data quality. Meta-analysis was performed using R4.1.1 software.
Results
Thirty-eight studies were included in this meta-analysis. For the most studied sociodemographic correlates, demoralization was negatively correlated with income (z = −0.29, 95% CI: −0.51, −0.02), education (z = − 0.11, 95% CI: − 0.16, −0.05), and age (z = −0.45, 95%CI: −0.75, −0.01). For the most studied clinical correlates, demoralization was positively correlated with symptom burden (z = 0.37, 95% CI: 0.22, 0.50) and negatively correlated with quality of life (z = −0.40, 95% CI: −0.54, −0.24). For the most studied psychosocial correlates, demoralization was negatively correlated with social support (z = −0.39, 95% CI: −0.51, −0.26) and positively correlated with anxiety (z = 0.65, 95% CI: 0.56, 0.73), depression (z = 0.61, 95% CI: 0.54, 0.67), and suicidal ideation (z = 0.48, 95% CI: 0.34, 0.60).
Significance of results
Demoralization showed either positive or negative associations with sociodemographic, clinical, and psychological variables. More research is needed to explore the underlying mechanisms to develop effective interventions. This review provides information on the factors associated with demoralization in cancer patients, which can be used to inform strategies for clinical care providers.
Glaciers play a crucial role in the Asian Water Tower, underscoring the necessity of accurately assessing their mass balance and ice volume to evaluate their significance as sustainable freshwater resources. In this study, we analyzed ground-penetrating radar (GPR) measurements from a 2020 survey of the Xiao Dongkemadi Glacier (XDG) to determine ice thickness, and we extended the glacier’s volume-change record to 2020 by employing multi-source remote-sensing data. Our findings show that the GPR-derived mean ice thickness of XDG in 2020 was 54.78 ± 3.69 m, corresponding to an ice volume of 0.0811 ± 0.0056 km3. From 1969 to 2020, the geodetic mass balance was −0.19 ± 0.02 m w.e. a−1, and the glacier experienced area and ice volume losses of 16.38 ± 4.66% and 31.01 ± 4.59%, respectively. The long-term mass-balance reconstruction reveals weak fluctuations occurred from 1967 to 1993 and that overall mass losses have occurred since 1994. This ongoing shrinkage and ice loss are mainly associated with the temperature increases in the warm season since the 1960s. If the climate trend across the central Tibetan Plateau follows to the SSP585 scenario, then XDG is at risk of disappearing by the end of the century.
Time-domain characterization of ultrashort pulses is essential for studying interactions between light and matter. Here, we propose and demonstrate an all-optical pulse sampling technique based on reflected four-wave mixing with perturbation on a solid surface. In this method, a weak perturbation pulse perturbs the four-wave mixing signal generated by a strong fundamental pulse. The modulation signal of the four-wave mixing, which is detected in the reflection geometry to ensure a perfect phase-matching condition, directly reflects the temporal profile of the perturbation pulse. We successfully characterized multi-cycle and few-cycle pulses using this method. The reliability of our approach was verified by comparing it to the widely employed frequency-resolved optical gating method. This technique provides a simple and robust method for characterizing ultrashort laser pulses.
The emergency response capacity of nurses is quite important during the COVID-19 epidemic. This study aimed to determine the relationship of resilience with emergency response capacity and occupational stresses during COVID-19 re-outbreak.
Methods
This is a cross-sectional study that involved 241 new nurses. Questionnaires (including demographic characteristics and self-report questionnaires) were sent via QR code and used to conduct an online survey of new nurses. Resilience, emergency response capacity, and occupational stressors were measured using questionnaires.
Results
Mean resilience score was 62.68 ± 14.04, which corresponds to a moderate level. Age, marital status, and work experience were significantly associated with resilience (P = 0.037, P = 0.046, P = 0.011) and emergency response capacity (P = 0.018, P = 0.045, P < 0.000). Total score and 3 dimensions of resilience were positively correlated with emergency response competency questionnaire and 3 dimensions (P < 0.01). Total scores of the nurse job stress scale and patient care dimension were negatively correlated with resilience scores (P < 0.05). Resilience played a partial mediating role in occupational stressors and emergency response capacity, and mediating effect accounted for 45.79% of the total effect.
Conclusions
The nursing superintendent must pay more attention to the resiliency of new nurses to reduce occupational stressors and improve emergency response capacity while helping new nurses cope with COVID-19 re-outbreak.
Er:CaF2 crystals are crucial gain media for producing 3 μm mid-infrared (MIR) lasers pumped by 976 nm continuous-wave (CW) lasers owing to their low phonon energy and high conversion efficiency. This study investigated the damage characteristics and mechanism of Er:CaF2 crystals irradiated with a 976 nm CW laser. The laser-induced damage threshold of Er:CaF2 crystals with different Er3+ doping levels was tested; the damage morphology consists of a series of regular 70° cracks related to the angle of the crystal slip system on the surface. A finite-element model was used to calculate the temperature and stress fields of the crystals. The results indicated that the damage can be attributed to surface tensile stresses caused by the temperature gradient, and crystals with higher doping concentrations were more susceptible to damage owing to stronger light absorption. These findings provide valuable insights into the development of high-power MIR lasers.
Achieving optimal nutritional status in patients with penetrating Crohn’s disease is crucial in preparing for surgical resection. However, there is a dearth of literature comparing the efficacy of total parenteral nutrition (TPN) v. exclusive enteral nutrition (EEN) in optimising postoperative outcomes. Hence, we conducted a case-matched study to assess the impact of preoperative EEN v. TPN on the incidence of postoperative adverse outcomes, encompassing overall postoperative morbidity and stoma formation, among penetrating Crohn’s disease patients undergoing bowel surgery. From 1 December 2012 to 1 December 2021, a retrospective study was conducted at a tertiary centre to enrol consecutive patients with penetrating Crohn’s disease who underwent surgical resection. Propensity score matching was utilised to compare the incidence of postoperative adverse outcomes. Furthermore, univariate and multivariate logistic regression analyses were conducted to identify the risk factors associated with adverse outcomes. The study included 510 patients meeting the criteria. Among them, 101 patients in the TPN group showed significant improvements in laboratory indicators at the time of surgery compared with pre-optimisation levels. After matching, TPN increased the occurrence of postoperative adverse outcomes (92·2 % v. 64·1 %, P = 0·001) when compared with the EEN group. In the multivariate analysis, TPN showed a significantly higher OR for adverse outcomes than EEN (OR = 4·241; 95 % CI 1·567–11·478; P = 0·004). The study revealed that penetrating Crohn’s disease patients who were able to fulfil their nutritional requirements through EEN exhibited superior nutritional and surgical outcomes in comparison with those who received TPN.
Increases in population size are associated with the adoption of Neolithic agricultural practices in many areas of the world, but rapid population growth within the Dingsishan cultural group of southern China pre-dated the arrival of rice and millet farming in this area. In this article, the authors identify starch grains from taros (Colocasia) and yams (Dioscorea) in dental calculus and on food-processing tools from the Dingsishan sites of Huiyaotian and Liyupo (c. 9030–6741 BP). They conclude that the harvesting and processing of these dietary staples supported an Early Holocene population increase in southern East Asia, before the spread of rice and millet farming.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
We present an annual-resolution, millennium-long tree-ring chronology for northern Japan. The chronology is based on 5309 measurements of tree-ring δ18O from 37 samples of Hiba arbor-vitae (Thujopsis dolabrata var. hondae). Although the exact geographical origin of 27 of the samples is unknown because they were extracted from excavated archaeological material, pattern matching of the tree-ring δ18O variations was robust among all 37 samples. The floating chronology constructed using all samples was cross-dated against a previously published δ18O chronology from central Japan, yielding a correlation coefficient of 0.26 (t = 9.0; p < 0.01), resulting in a temporal coverage of 417–1595 CE (i.e., 1179 yrs). The global 14C spike event at 774–775 CE was clearly recorded in the annual 14C data, which provides independent support for the dating of tree rings using oxygen isotopes. Furthermore, this δ18O chronology from northern Japan was used to successfully cross-date a wood sample buried during the “Millennium Eruption” of Baitoushan, which is located on the border between China and North Korea.
To realise the overall calibration of the error model coefficients of accelerometers in an inertial combination and to improve the navigation accuracy of the inertial navigation system, a norm-observation method is applied to the calibration, especially for the quadratic coefficient of the accelerometer. The Taylor formula is used to expand the solution of the acceleration model, and the intermediate variables with error model coefficients are obtained using the least square method. The formulas for calculating the quadratic term coefficient, scale factor and bias of the accelerometer are given. A 20-position method is designed to calibrate the accelerometer combination, the effectiveness of the method is verified by simulation, and the effects of installation misalignment and rod-arm error on calibration accuracy are analysed. The results show that the installation misalignments and rod-arm errors have little influence on the coefficient calibration, less than 10−8, and can be neglected in a practical calibration process.
The molten sand that is a mixture of calcia, magnesia, alumina and silicate, known as CMAS, is characterized by its high viscosity, density and surface tension. The unique properties of CMAS make it a challenging material to deal with in high-temperature applications, requiring innovative solutions and materials to prevent its buildup and damage to critical equipment. Here, we use multiphase many-body dissipative particle dynamics simulations to study the wetting dynamics of highly viscous molten CMAS droplets. The simulations are performed in three dimensions, with varying initial droplet sizes and equilibrium contact angles. We propose a parametric ordinary differential equation (ODE) that captures the spreading radius behaviour of the CMAS droplets. The ODE parameters are then identified based on the physics-informed neural network (PINN) framework. Subsequently, the closed-form dependency of parameter values found by the PINN on the initial radii and contact angles are given using symbolic regression. Finally, we employ Bayesian PINNs (B-PINNs) to assess and quantify the uncertainty associated with the discovered parameters. In brief, this study provides insight into spreading dynamics of CMAS droplets by fusing simple parametric ODE modelling and state-of-the-art machine-learning techniques.
We report an experimental study about the effect of an obstructed centre on heat transport and flow reversal by inserting an adiabatic cylinder at the centre of a quasi-two-dimensional Rayleigh–Bénard convection cell. The experiments are carried out in a Rayleigh number ($Ra$) range of $2\times 10^7 \leq Ra \leq 2\times 10^9$ and at a Prandtl number ($Pr$) of $5.7$. It is found that for low $Ra$, the obstructed centre leads to a heat transfer enhancement of up to 21 $\%$, while as $Ra$ increases, the magnitude of the heat transfer enhancement decreases and the heat transfer efficiency ($Nu$) eventually converges to that of the unobstructed normal cell. Particle image velocimetry measurements show that the heat transfer enhancement originates from the change in flow topology due to the presence of the cylindrical obstruction. In the low-$Ra$ regime the presence of the obstruction promotes the transition of the flow topology from the four-roll state to the abnormal single-roll state then to the normal single-roll state with increasing obstruction size. While in the high-$Ra$ regime, the flow is always in the single-roll state regardless of the obstruction size, although the flow becomes more coherent with the size of the obstruction. We also found that in the presence of the cylindrical obstruction, the stability of the corner vortices is significantly reduced, leading to a large reduction in the frequency of flow reversals.
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
During the early stages of human pregnancy, successful implantation of embryonic trophoblast cells into the endometrium depends on good communication between trophoblast cells and the endometrium. Abnormal trophoblast cell function can cause embryo implantation failure. In this study, we added cyclosporine A (CsA) to the culture medium to observe the effect of CsA on embryonic trophoblast cells and the related mechanism. We observed that CsA promoted the migration and invasion of embryonic trophoblast cells. CsA promoted the expression of leukaemic inhibitory factor (LIF) and fibroblast growth factor (FGF). In addition, CsA promoted the secretion and volume increase in vesicles in the CsA-treated group compared with the control group. Therefore, CsA may promote the adhesion and invasion of trophoblast cells through LIF and FGF and promote the vesicle dynamic process, which is conducive to embryo implantation.
The objective of this study was to understand and measure epigenetic changes associated with the occurrence of CHDs by utilizing the discordant monozygotic twin model. A unique set of monozygotic twins discordant for double-outlet right ventricles (DORVs) was used for this multiomics study. The cardiac and muscle tissue samples from the twins were subjected to whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and liquid chromatography-tandem mass spectrometry analysis. Sporadic DORV cases and control fetuses were used for validation. Global hypomethylation status was observed in heart tissue samples from the affected twins. Among 36,228 differentially methylated regions (DMRs), 1097 DMRs involving 1039 genes were located in promoter regions. A total of 419 genes, and lncRNA–mRNA pairs involved 30 genes, and 62 proteins were significantly differentially expressed. Multiple omics integrative analysis revealed that five genes, including BGN, COL1A1, COL3A1, FBLN5, and FLAN, and three pathways, including ECM-receptor interaction, focal adhesion and TGF-β signaling pathway, exhibited differences at all three levels. This study demonstrates a multiomics profile of discordant twins and explores the possible mechanism of DORV development. Global hypomethylation might be associated with the risk of CHDs. Specific genes and specific pathways, particularly those involving ECM–receptor interaction, focal adhesion and TGF–β signaling, might be involved in the occurrence of CHDs.