We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lactoferrin (LF), a sialylated iron-binding glycoprotein consisting of multiple sialic acid (Sia) residues attached to N-linked glycan chains, and studies have shown that both the iron and Sia are crucial for early neurodevelopment and cognition.(1) However, there is limited knowledge of the impacts of the iron saturation and sialylation in LF molecule on the early neurodevelopment and cognition. Objectives of the study were to explore the impacts and mechanisms of iron saturation and sialylation in LF molecule on early neurodevelopment and cognition. Maternal dietary intervention with native bovine LF (Native-LF), iron-free bovine LF (Apo-LF), or Sia-free bovine LF (Desia-LF) at a dose of 0.60 g/kg body weight per day was administered throughout the lactation period. Offspring pups were assessed for anxiety, learning, and memory through behavioral tests before being euthanized on postnatal day 63. Brain hippocampal tissue was then analyzed for polysialic acid (polySia), a marker of neurodevelopment and neuroplasticity.(1) The study protocol was approved by the Xiamen University Animal Ethics Committee (AE1640102). Our results showed that Apo-LF pups exhibited a 1.32-fold increase in total distance travelled in the arena compared to both Native-LF and Desia-LF groups, with the overall difference among the groups being statistically significant in the open field test (p = 0.008). Additionally, the frequency of central area entries in the Apo-LF group was 2.00-fold higher than in Desia-LF pups (p = 0.038) and 1.3-fold higher than in Native-LF pups, with a significant overall difference (p = 0.042). No significant differences in total distance travelled or central area entries were observed between Native-LF and Desia-LF groups (p > 0.05). These results suggest that Apo-LF pups demonstrated better anti-anxiety behaviors than both Native-LF and Desia-LF pups. In the Morris water maze test, Apo-LF pups spent significantly more time in the target quadrant compared to both Desia-LF (p = 0.019) and Native-LF pups (p = 0.0009), indicating enhanced short-term memory. Additionally, Apo-LF pups exhibited greater polySia-NCAM expression (1.2.95 ± 0.048) in the hippocampus, a marker associated with neuroplasticity and neurogenesis compared to both Native-LF and Desia-LF pups. We conclude that maternal supplementation with different types of lactoferrin during lactation supports improved learning and memory in offspring through distinct mechanisms, with sialylation playing a crucial role in neurocognitive development.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
This study examined global trends in influenza-associated lower respiratory infections (LRIs) deaths from 1990 to 2019 using data from the GBD 2019. The annual percentage change (APC) and average annual percentage change (AAPC) were used to analyze age-standardized death rates (ASDR). Globally, the ASDR of influenza-associated LRIs was 3.29/100,000 in 2019, which was higher in the African region (6.57/100,000) and among adults aged 70 years and older (29.88/100,000). The ASDR of influenza-associated LRIs decreased significantly from 1990 to 2019 (AAPC = −1.88%, P < 0.05). However, it was significantly increased among adults aged 70 years and older during 2017–2019 (APC = 2.31%, P < 0.05), especially in Western Pacific Region and South-East Asia Regions. The ratio of death rates between adults aged 70 years and older and children aged under 5 years increased globally from 1.63 in 1990 to 5.34 in 2019, and the Western Pacific Region experienced the most substantial increase, with the ratio soaring from 1.83 in 1990 to 12.98 in 2019. Despite a decline in the global ASDR of influenza-associated LRIs, it continues to impose a significant burden, particularly in the African, Western Pacific regions and among the elderly population.
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s−1·mm−2·mrad−2·0.1%BW−1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
The immediate priorities for high-power delivery employing solid-core fibers are balancing the nonlinear effect and beam deterioration. Here, the scheme of tapered multimode fiber is experimentally realized. The tapered multimode fiber, featuring a 15 m (24/200 μm)–10 m (tapered region)–80 m (48/400 μm) profile, guides the laser with a weakly coupled condition. With the input power of 1035 W, the maximum output power over the 105 m delivery is 962 W, corresponding to a high efficiency of over 93% and a nonlinear suppression ratio of over 50 dB. Mode resolving results show high-order-mode contents of less than –30 dB in the whole delivery path, resulting in a high-fidelity delivery with M2 factors of 1.20 and 1.23 for the input and output lasers, respectively. Furthermore, the ultimate limits of delivery lengths for solid-core weakly coupled fibers are discussed. This work provides a valuable reference to reconsider the future boom of high-power laser delivery based on solid-core fibers.
Oncomelania hupensis (O. hupensis), the sole intermediate host of Schistosoma japonicum, greatly influence the prevalence and distribution of schistosomiasis japonica. The distribution area of O. hupensis has remained extensive for numerous years. This study aimed to establish a valid agent-based model of snail density and further explore the environmental conditions suitable for snail breeding. A marshland with O. hupensis was selected as a study site in Dongting Lake Region, and snail surveys were monthly conducted from 2007 to 2016. Combined with the data from historical literature, an agent-based model of snail density was constructed in NetLogo 6.2.0 and validated with the collected survey data. BehaviorSpace was used to identify the optimal ranges of soil temperature, pH, soil water content, and vegetation coverage for snail growth, development and reproduction. An agent-based model of snail density was constructed and showed a strong agreement with the monthly average snail density from the field surveys. As soil temperature increased, the snail density initially rose before declining, reaching its peak at around 21°C. There were similar variation patterns for other environmental factors. The findings from the model suggested that the optimum ranges of soil temperature, pH, soil water content and vegetation coverage were 19°C to 23 °C, 6.4 to 7.6, 42% to 75%, and 70% to 93%, respectively. A valid agent-based model of snail density was constructed, providing more objective information about the optimum ranges of environmental factors for snail growth, development and reproduction.
Several novel anthropometric indices, including paediatric body adiposity index (BAIp) and triponderal mass index (TMI), have emerged as potential tools for estimating body fat in preschool children. However, their comparative validity and accuracy, particularly when compared with established indicators such as BMI, have not been thoroughly investigated. This cross-sectional study enrolled 2869 preschoolers aged 3–6 years in Wuhan, China. The non-parametric Bland–Altman analysis was employed to evaluate the agreement between BMI, BAIp and TMI with percentage of body fat (PBF), determined by bioelectrical impedance analysis (BIA), serving as the reference measure of adiposity. Additionally, receiver operating characteristic curve analysis was conducted to assess the effectiveness of BMI, BAIp and TMI in screening for obesity. BAIp demonstrated the least bias in estimating PBF, showing discrepancies of 3·64 % (95 % CI 3·40 %, 4·12 %) in boys and 3·95 % (95 % CI 3·79 %, 4·23 %) in girls. Conversely, BMI underestimated PBF by 3·89 % (95 % CI 3·70 %, 4·37 %) in boys and 4·81 % (95 % CI 4·59 %, 5·09 %) in girls, while TMI also underestimated PBF by 5·15 % (95 % CI 4·90 %, 5·52 %) in boys and 5·68 % (95 % CI 5·30 %, 5·91 %) in girls. BAIp exhibited the highest AUC values (AUC = 0·867–0·996) in boys, whereas in girls, there was no statistically significant difference between BMI (AUC = 0·936, 95 % CI 0·921, 0·948) and BAIp (AUC = 0·901, 95 % CI 0·883, 0·916) in girls (P = 0·054). In summary, when considering the identification of obesity, BAIp shows promise as a screening tool for both boys and girls.
Iodine (I) is a trace element with health and environmental significance. Iodate (IO3-), iodide (I-) and organic iodine (org-I) are the major species of iodine that exist in the environment. Dissimilatory IO3--reducing bacteria reduce IO3- to I- directly under anoxic conditions via their IO3- reductases that include periplasmic iodate reductase IdrABP1P2, extracellular DMSO reductase DmsEFAB and metal reductase MtrCAB. IdrAB and DmsEFAB reduce IO3- to hypoiodous acid (HIO) and H2O2. The reaction intermediate HIO is proposed to be disproportionated abiotically into I- and IO3- at a ratio of 2:1. The H2O2 is reduced to H2O by IdrP1P2 and MtrCAB as a detoxification mechanism. Additionally, dissimilatory Fe(III)- and sulfate-reducing bacteria reduce IO3- to I- directly via their IO3- reductases and indirectly via the reduction products Fe(II) and sulfide in the presence of Fe(III) and sulfate, respectively. I--oxidizing bacteria oxidize I- to molecular iodine (I2) directly under oxic conditions via their extracellular multicopper iodide oxidases IoxAC. In addition to I2, a variety of org-I compounds are also produced by the I--oxidizing bacteria during I- oxidation. Furthermore, ammonia-oxidizing bacteria oxidize I- to IO3- directly under oxic conditions, probably via their intracellular ammonia-oxidizing enzymes. Many bacteria produce extracellular reactive oxygen species that can oxidize I- to triiodide (I3-). Bacteria also accumulate I- during which I- is oxidized to HIO by their extracellular vanadium iodoperoxidases. The HIO is then transported into the bacterial cells. Finally, bacteria methylate I- to org-I CH3I, probably via their methyltransferases. Thus, bacteria play crucial and versatile roles in the global biogeochemical cycling of iodine via IO3- reduction, I- oxidation and accumulation and org-I formation.
Dietary n-3 PUFA may have potential benefits in preventing peptic ulcer disease (PUD). However, data from observational epidemiological studies are limited. Thus, we conducted a Mendelian randomisation analysis to reveal the causal impact of n-3 PUFA on PUD. Genetic variants strongly associated with plasma levels of total or individual n-3 PUFA including plant-derived α-linolenic acid and marine-derived EPA, DPA and DHA were enrolled as instrumental variables. Effect size estimates of the n-3 PUFA-associated genetic variants with PUD were evaluated using data from the UK biobank. Per one sd increase in the level of total n-3 PUFA in plasma was significantly associated with a lower risk of PUD (OR = 0·91; 95 % CI 0·85, 0·99; P = 0·020). The OR were 0·81 (95 % CI 0·67, 0·97) for EPA, 0·72 (95 % CI 0·58, 0·91) for DPA and 0·87 (95 % CI 0·80, 0·94) for DHA. Genetically predicted α-linolenic acid levels in plasma had no significant association with the risk of PUD (OR = 5·41; 95 % CI 0·70, 41·7). Genetically predicted plasma levels of n-3 PUFA were inversely associated with the risk of PUD, especially marine-based n-3 PUFA. Such findings may have offered an effective and feasible strategy for the primary prevention of PUD.
Suppressing mode degradation is the key issue for high-power laser delivery; however, diagnosing mode degradation in its entirety, ranging from the contents and origins to locations, has always been a major obstacle. Here, a versatile approach for tracing the origins of mode coupling is demonstrated through addressing the differential intermodal dispersions of fiber modes. Full recognition for modal contents and the origins of mode degradation are experimentally completed in a two-mode fiber laser delivery system, which assists a significant improvement of beam quality M2 from 1.35 to 1.15 at the highest power of over 300 W. This method yields a quantitative characterization for manipulating the individual mode of dual-mode coupling origins or their combinations. This work points toward a promising strategy for the online tracing of mode coupling in cascade fiber links, thus enabling further pursuit of seeking extreme beam quality in high-power fiber laser systems.
The East Asian winter monsoon (EAWM) has a profound effect on the winter climate in East Asia. The modern EAWM variability is tightly linked to the high-latitude Northern Hemisphere climate change through the Siberian High and can also be regulated by the low-latitude El Niño-Southern Oscillation through oceanic or atmospheric teleconnections. However, the Quaternary EAWM evolution has long been only attributed to the high-latitude climate change, resulting in the uncertainty in interpreting the out-of-phased EAWM variation recording in the East Asian continent and marginal seas. Here we presented a sediment record at Integrated Ocean Drilling Program Site U1427 in the southern Japan Sea to reconstruct the EAWM evolution since the last glacial maximum. By combining our record with previous reconstructions and simulations, we found the synchronous relationship between winter monsoon in northern and southern regions of East Asia from ∼24 to 8 ka, but anti-correlated relationship since ∼8 ka. We proposed the winter insolation and Atlantic meridional overturning circulation were the main drivers from last glacial to early Holocene, and then ENSO became a dominant factor in controlling the regional heterogeneity of EAWM evolution in the middle and late Holocene. This research explains much of the controversy in the Quaternary EAWM records and highlights the low-high latitude interaction in East Asian winter climate change.
Linguistic synesthesia as a productive figurative language usage has received little attention in the field of Natural Language Processing (NLP). Although linguistic synesthesia is similar to metaphor concerning involving conceptual mappings and showing great usefulness in the NLP tasks such as sentiment analysis and stance detection, the well-studied methods of metaphor detection cannot be applied to the detection of linguistic synesthesia directly. This study incorporates comprehensive linguistic features (i.e., character and radical information, word segmentation information, and part-of-speech tagging) into a neural model to detect linguistic synesthetic usages in a sentence automatically. In particular, we employ a span-based boundary detection model to extract sensory words. In addition, a joint model is proposed to detect the original and synesthetic modalities of the sensory words collectively. Based on the experiments, our model is shown to achieve state-of-the-art results on the dataset for linguistic synesthesia detection. The results prove that leveraging culturally enriched linguistic features and joint learning are effective in linguistic synesthesia detection. Furthermore, as the proposed model leverages non-language-specific linguistic features, the model would be applied to the detection of linguistic synesthesia in other languages.
Euwallacea interjectus, a recently discovered pest in poplar plantations, poses a significant economic threat due to its role in causing widespread tree mortality. This pest's cryptic behaviour has hindered research and control efforts, making laboratory rearing a valuable tool for studying its development and biology. We investigated the development period and biological characteristics of E. interjectus using artificial diets and fungal medium. Our findings revealed that the development time for eggs, larvae, and pupae averages approximately 6, 18, and 6 days, respectively. Notably, first and second instar larvae displayed peak moulting periods at 3.45 ± 0.64 SD and 7.92 ± 1.77 SD days, respectively. Furthermore, we measured head capsule widths of postmolt larvae, yielding values of 318.02 ± 7.38 SD μm for first-instar larvae, 403.01 ± 11.08 SD μm for second-instar larvae, and 549.54 ± 20.74 SD μm for third-instar larvae. Our research also uncovered a positive correlation between the number of progeny (eggs, larvae, pupae, and adults) and the mean length of the gallery system. Interestingly, the haplodiploid reproductive strategy did not significantly affect the number of offspring produced by the foundress. Additionally, we observed that foundresses displayed higher fecundity when subjected to nutrient-rich diets as compared to nutrient-poor diets. Our results will deepen our understanding of the biology of E. interjectus and provide criteria for larval instar classification. Additionally, managing nutrient availability within the colony could be considered a viable approach to regulating population size.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
We explore the limiting spectral distribution of large-dimensional random permutation matrices, assuming the underlying population distribution possesses a general dependence structure. Let $\textbf X = (\textbf x_1,\ldots,\textbf x_n)$$\in \mathbb{C} ^{m \times n}$ be an $m \times n$ data matrix after self-normalization (n samples and m features), where $\textbf x_j = (x_{1j}^{*},\ldots, x_{mj}^{*} )^{*}$. Specifically, we generate a permutation matrix $\textbf X_\pi$ by permuting the entries of $\textbf x_j$$(j=1,\ldots,n)$ and demonstrate that the empirical spectral distribution of $\textbf {B}_n = ({m}/{n})\textbf{U} _{n} \textbf{X} _\pi \textbf{X} _\pi^{*} \textbf{U} _{n}^{*}$ weakly converges to the generalized Marčenko–Pastur distribution with probability 1, where $\textbf{U} _n$ is a sequence of $p \times m$ non-random complex matrices. The conditions we require are $p/n \to c >0$ and $m/n \to \gamma > 0$.
The innovation value of open government data (OGD) drives firms to the participation in OGD-driven innovation. However, to fully excavate the innovation value of OGD for firms, it is essential to explore the factors and mechanisms that affect OGD-driven innovation capacity. On the basis of the technology–organization–environment (TOE) framework, a theoretical model affecting OGD-driven innovation capacity is proposed for analysis by partial least squares structural equation modeling with 236 sample data from China. The results indicate that top leaders’ support positively impacts on OGD-driven innovation capacity in firms. And we also prove that technical competence, organizational arrangement, and innovation support partially mediate the relationship between top leaders’ support and OGD-driven innovation capacity on the basis of the TOE framework. Consequently, the findings provide new research perspectives and practical guidance for promoting OGD-driven innovation capacity in firms.
The numerical investigation focuses on the flow patterns around a rectangular cylinder with three aspect ratios ($L/D=5$, $10$, $15$) at a Reynolds number of $1000$. The study delves into the dynamics of vortices, their associated frequencies, the evolution of the boundary layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at $L/D=5$, three KH vortices merge into a single LE vortex. However, at $L/D=10$ and $15$, two KH vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets. A fractional harmonic arises due to feedback from the split LE shear layer moving upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed, creating a Kármán-like street in the wake. The intensity of wake oscillation at $L/D=5$ surpasses that in the other two cases. Boundary layer transition occurs after the saturation of disturbance energy for $L/D=10$ and $15$, but not for $L/D=5$. The low-frequency disturbances are selected to generate streaks inside the boundary layer. The TE vortex shedding induces the formation of a favourable pressure gradient, accelerating the flow and fostering boundary layer relaminarization. The self-similarity of the velocity defect is observed in all three wakes, accompanied by the decay of disturbance energy. Importantly, the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the overall decay of disturbance energy. This comprehensive exploration provides insights into complex flow phenomena and their underlying dynamics.
Extreme events are ubiquitous in nature and social society, including natural disasters, accident disasters, crises in public health (such as Ebola and the COVID-19 pandemic), and social security incidents (wars, conflicts, and social unrest). These extreme events will heavily impact financial markets and lead to the appearance of extreme fluctuations in financial time series. Such extreme events lack statistics and are thus hard to predict. Recurrence interval analysis provides a feasible solution for risk assessment and forecasting. This Element aims to provide a systemic description of the techniques and research framework of recurrence interval analysis of financial time series. The authors also provide perspectives on future topics in this direction.
Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) is a distinctive member of the serine–threonine protein AGC kinase family and an effective kinase for cAMP signal transduction. In recent years, scuticociliate has caused a lot of losses in domestic fishery farming, therefore, we have carried out morphological and molecular biological studies. In this study, diseased guppies (Poecilia reticulata) were collected from an ornamental fish market, and scuticociliate Philaster apodigitiformis Miao et al., 2009 was isolated. In our prior transcriptome sequencing research, we discovered significant expression of the β-PKA gene in P. apodigitiformis during its infection process, leading us to speculate its involvement in pathogenesis. A complete sequence of the β-PKA gene was cloned, and quantified by quantitative reverse transcription-polymerase chain reaction to analyse or to evaluate the functional characteristics of the β-PKA gene. Morphological identification and phylogenetic analysis based on small subunit rRNA sequence, infection experiments and haematoxylin–eosin staining method were also carried out, in order to study the pathological characteristics and infection mechanism of scuticociliate. The present results showed that: (1) our results revealed that β-PKA is a crucial gene involved in P. apodigitiformis infection in guppies, and the findings provide valuable insights for future studies on scuticociliatosis; (2) we characterized a complete gene, β-PKA, that is generally expressed in parasitic organisms during infection stage and (3) the present study indicates that PKA plays a critical role in scuticociliate when infection occurs by controlling essential steps such as cell growth, development and regulating the activity of the sensory body structures and the irritability system.
Zinc (Zn) is widely known as an essential trace element for fish and new ways to supply it to them are needed. Palygorskite (Pal) is a natural silicate clay mineral and the palygorskite structure contains nano-channels, which are filled with water and exchangeable ions. Zn-bearing palygorskites (Zn-Pal) prepared using ion exchange have attracted attention due to the durable antibacterial properties that limit pathogens and as a potential new Zn source for livestock. The present study was conducted to evaluate the effects of Zn-Pal supplementation on the growth performance, nutrient retention, meat quality, Zn accumulation, and intestinal Zn transporter protein gene expression in blunt snout bream Megalobrama amblycephala. The fish were fed a basal diet without an exogenous Zn source and the basal diet was supplemented with 125 mg/kg Zn as Zn sulfate (ZnSO4) or 35, 80, or 125 mg/kg Zn as Zn-Pal. Each diet was tested using three replicates for 7 weeks. The results showed that dietary Zn-Pal supplementation quadratically (P<0.05) increased growth performance, nutrient retention, total and Cu/Zn superoxide dismutase activity, Zn content in scales, and intestinal Zn transporter protein gene expression. The muscular cooking loss in blunt snout bream decreased with the optimum Zn-Pal Zn level of 35 mg/kg. Compared to the fish treated with ZnSO4, the fish supplemented with 35 mg/kg as Zn-Pal exhibited similar growth performance and nutrient retention (P>0.05), increased mRNA expression of the metal-response element-binding transcription factor-1 in the intestine (P<0.05), and decreased cooking loss of muscle (P<0.05).The results suggested that 35 mg/kg Zn supplementation as Zn-Pal could improve the growth performance and body composition, increase nutrient retention and tissue Zn concentrations, enhance the muscle water-holding capacity, and enhance antioxidant status in blunt snout bream. The Zn-Pal was more efficient and could be used as an alternative Zn source to ZnSO4 in the diet of blunt snout bream.