We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the present article, we study compact complex manifolds admitting a Hermitian metric which is strong Kähler with torsion (SKT) and Calabi–Yau with torsion (CYT) and whose Bismut torsion is parallel. We first obtain a characterization of the universal cover of such manifolds as a product of a Kähler Ricci-flat manifold with a Bismut flat one. Then, using a mapping torus construction, we provide non-Bismut flat examples. The existence of generalized Kähler structures is also investigated.
We investigate some properties of complex structures on Lie algebras. In particular, we focus on nilpotent complex structures that are characterised by suitable J-invariant ascending or descending central series, $\mathfrak {d}^{\,j}$ and $\mathfrak {d}_j$, respectively. We introduce a new descending series $\mathfrak {p}_j$ and use it to prove a new characterisation of nilpotent complex structures. We also examine whether nilpotent complex structures on stratified Lie algebras preserve the strata. We find that there exists a J-invariant stratification on a step $2$ nilpotent Lie algebra with a complex structure.
For a locally compact metrisable group G, we study the action of ${\rm Aut}(G)$ on ${\rm Sub}_G$, the set of closed subgroups of G endowed with the Chabauty topology. Given an automorphism T of G, we relate the distality of the T-action on ${\rm Sub}_G$ with that of the T-action on G under a certain condition. If G is a connected Lie group, we characterise the distality of the T-action on ${\rm Sub}_G$ in terms of compactness of the closed subgroup generated by T in ${\rm Aut}(G)$ under certain conditions on the center of G or on T as follows: G has no compact central subgroup of positive dimension or T is unipotent or T is contained in the connected component of the identity in ${\rm Aut}(G)$. Moreover, we also show that a connected Lie group G acts distally on ${\rm Sub}_G$ if and only if G is either compact or it is isomorphic to a direct product of a compact group and a vector group. All the results on the Lie groups mentioned above hold for the action on ${\rm Sub}^a_G$, a subset of ${\rm Sub}_G$ consisting of closed abelian subgroups of G.
Let $M\stackrel {\rho _0}{\curvearrowleft }S$ be a $C^\infty $ locally free action of a connected simply connected solvable Lie group S on a closed manifold M. Roughly speaking, $\rho _0$ is parameter rigid if any $C^\infty $ locally free action of S on M having the same orbits as $\rho _0$ is $C^\infty $ conjugate to $\rho _0$. In this paper we prove two types of result on parameter rigidity.
First let G be a connected semisimple Lie group with finite center of real rank at least $2$ without compact factors nor simple factors locally isomorphic to $\mathop {\mathrm {SO}}\nolimits _0(n,1)(n\,{\geq}\, 2)$ or $\mathop {\mathrm {SU}}\nolimits (n,1)(n\geq 2)$, and let $\Gamma $ be an irreducible cocompact lattice in G. Let $G=KAN$ be an Iwasawa decomposition. We prove that the action $\Gamma \backslash G\curvearrowleft AN$ by right multiplication is parameter rigid. One of the three main ingredients of the proof is the rigidity theorems of Pansu, and Kleiner and Leeb on the quasi-isometries of Riemannian symmetric spaces of non-compact type.
Secondly we show that if $M\stackrel {\rho _0}{\curvearrowleft }S$ is parameter rigid, then the zeroth and first cohomology of the orbit foliation of $\rho _0$ with certain coefficients must vanish. This is a partial converse to the results in the author’s [Vanishing of cohomology and parameter rigidity of actions of solvable Lie groups. Geom. Topol. 21(1) (2017), 157–191], where we saw sufficient conditions for parameter rigidity in terms of vanishing of the first cohomology with various coefficients.
For a locally compact group G, we study the distality of the action of automorphisms T of G on SubG, the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on SubG if and only if Tn is the identity map for some $n\in\mathbb N$. As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on SubG if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on SubG if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on SubG. We also show that any compactly generated distal group G is Lie projective.
We prove that the HRT (Heil, Ramanathan, and Topiwala) Conjecture is equivalent to the conjecture that co-central translates of square-integrable functions on the Heisenberg group are linearly independent.
We introduce a refined version of group cohomology and relate it to the space of polynomials on the group in question. We show that the polynomial cohomology with trivial coefficients admits a description in terms of ordinary cohomology with polynomial coefficients, and that the degree one polynomial cohomology with trivial coefficients admits a description directly in terms of polynomials. Lastly, we give a complete description of the polynomials on a connected, simply connected nilpotent Lie group by showing that these are exactly the maps that pull back to classical polynomials via the exponential map.
This paper is concerned with support theorems of the X-ray transform on non-compact manifolds with conjugate points. In particular, we prove that all simply connected 2-step nilpotent Lie groups have a support theorem. Important ingredients of the proof are the concept of plane covers and a support theorem for simple manifolds by Krishnan. We also provide examples of non-homogeneous 3-dimensional simply connected manifolds with conjugate points which have support theorems.
where $\tau :{\open R}^n\to {\open R}^n$ is a general function. In particular, for the linear choices $\tau (x)=0$, $\tau (x)=x$ and $\tau (x)={x}/{2}$ this covers the well-known Kohn–Nirenberg, anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such type appear naturally in the analysis on nilpotent Lie groups for polynomial functions τ and here we investigate the corresponding calculus in the model case of ${\open R}^n$. We also give examples of nonlinear τ appearing on the polarized and non-polarized Heisenberg groups.
A space X is said to be Lipschitz 1-connected if every Lipschitz loop 𝛾 : S1 → X bounds a O (Lip(𝛾))-Lipschitz disk f : D2 → X. A Lipschitz 1-connected space admits a quadratic isoperimetric inequality, but it is unknown whether the converse is true. Cornulier and Tessera showed that certain solvable Lie groups have quadratic isoperimetric inequalities, and we extend their result to show that these groups are Lipschitz 1-connected.
Hardy’s uncertainty principle for the Gabor transform is proved for locally compact abelian groups having noncompact identity component and groups of the form $\mathbb{R}^{n}\times K$, where $K$ is a compact group having irreducible representations of bounded dimension. We also show that Hardy’s theorem fails for a connected nilpotent Lie group $G$ which admits a square integrable irreducible representation. Further, a similar conclusion is made for groups of the form $G\times D$, where $D$ is a discrete group.
Let $G=\mathbb{H}^{n}\rtimes K$ be the Heisenberg motion group, where $K=U(n)$ acts on the Heisenberg group $\mathbb{H}^{n}=\mathbb{C}^{n}\times \mathbb{R}$ by automorphisms. We formulate and prove two analogues of Hardy’s theorem on $G$. An analogue of Miyachi’s theorem for $G$ is also formulated and proved. This allows us to generalize and prove an analogue of the Cowling–Price uncertainty principle and prove the sharpness of the constant $1/4$ in all the settings.
A finitely generated subgroup ${\rm\Gamma}$ of a real Lie group $G$ is said to be Diophantine if there is ${\it\beta}>0$ such that non-trivial elements in the word ball $B_{{\rm\Gamma}}(n)$ centered at $1\in {\rm\Gamma}$ never approach the identity of $G$ closer than $|B_{{\rm\Gamma}}(n)|^{-{\it\beta}}$. A Lie group $G$ is said to be Diophantine if for every $k\geqslant 1$ a random $k$-tuple in $G$ generates a Diophantine subgroup. Semi-simple Lie groups are conjectured to be Diophantine but very little is proven in this direction. We give a characterization of Diophantine nilpotent Lie groups in terms of the ideal of laws of their Lie algebra. In particular we show that nilpotent Lie groups of class at most $5$, or derived length at most $2$, as well as rational nilpotent Lie groups are Diophantine. We also find that there are non-Diophantine nilpotent and solvable (non-nilpotent) Lie groups.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.
We construct dense Borel measurable subgroups of Lie groups of intermediate Hausdorff dimension. In particular, we generalize the Erdős–Volkmann construction [Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math.221 (1966), 203–208], showing that any nilpotent $\sigma $-compact Lie group $N$ admits dense Borel subgroups of arbitrary dimension between zero and $\dim N$. In algebraic groups defined over a finite extension of the rationals, using diophantine properties of algebraic numbers, we are also able to construct dense subgroups of arbitrary dimension, but the general case remains open. In particular, we raise the following question: does there exist a measurable proper subgroup of $ \mathbb{R} $ of positive Hausdorff dimension which is stable under multiplication by a transcendental number? Subgroups of nilpotent $p$-adic analytic groups are also discussed.
It has been conjectured that if $G= \mathop{({ \mathbb{Z} }_{p} )}\nolimits ^{r} $ acts freely on a finite $CW$-complex $X$ which is homotopy equivalent to a product of spheres ${S}^{{n}_{1} } \times {S}^{{n}_{2} } \times \cdots \times {S}^{{n}_{k} } $, then $r\leq k$. We address this question with the relaxation that $X$ is finite-dimensional, and show that, to answer the question, it suffices to consider the case where the dimensions of the spheres are greater than or equal to $2$.
We formulate and prove two versions of Miyachi’s theorem for connected, simply connected nilpotent Lie groups. This allows us to prove the sharpness of the constant 1/4 in the theorems of Hardy and of Cowling and Price for any nilpotent Lie group. These theorems are proved using a variant of Miyachi’s theorem for the group Fourier transform.
The equivalence between contact and Pansu differentiable maps on Carnot groups is established within the class of maps that are C1 with respect to the ambient Euclidean structure.
Let a1… ad be a basis of the Lie algebra g of a connected Lie group G and let M be a Lie subgroup of,G. If dx is a non-zero positive quasi-invariant regular Borel measure on the homogeneous space X = G/M and S: X × G → C is a continuous cocycle, then under a rather weak condition on dx and S there exists in a natural way a (weakly*) continuous representation U of G in Lp (X;dx) for all p ε [1,].
Let Ai be the infinitesimal generator with respect to U and the direction ai, for all i ∈ { 1… d}. We consider n–th order strongly elliptic operators H = ΣcαAα with complex coefficients cα. We show that the semigroup S generated by the closure of H has a reduced heat kernel K and we derive upper bounds for k and all its derivatives.