To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the loop space of a moment-angle complex associated to a two-dimensional simplicial complex decomposes as a finite type product of spheres, loops on spheres and certain indecomposable spaces which appear in the loop space decomposition of Moore spaces. We also give conditions on certain subcomplexes under which, localised away from sufficiently many primes, the loop space of a moment-angle complex decomposes as a finite type product of spheres and loops on spheres.
In this paper, we analyse the possible homotopy types of the total space of a principal SU(2)-bundle over a 3-connected 8-dimensional Poincaré duality complex. Along the way, we also classify the 3-connected 11-dimensional complexes E formed from a wedge of S4’s and S7’s by attaching a 11-cell.
We study homotopy groups of spaces of long links in Euclidean space of codimension at least three. With multiple components, they admit split injections from homotopy groups of spheres. We show that, up to knotting, these account for all the homotopy groups in a range which depends on the dimensions of the source manifolds and target manifold and which roughly generalizes the triple-point-free range for isotopy classes. Just beyond this range, joining components sends both a parametrized long Borromean rings class and a Hopf fibration to a generator of the first nontrivial homotopy group of the space of long knots. For spaces of equidimensional long links of most source dimensions, we describe generators for the homotopy group in this degree in terms of these Borromean rings and homotopy groups of spheres. A key ingredient in most of our results is a graphing map which increases source and target dimensions by one.
We characterize the epimorphisms in homotopy type theory (HoTT) as the fiberwise acyclic maps and develop a type-theoretic treatment of acyclic maps and types in the context of synthetic homotopy theory as developed in univalent foundations. We present examples and applications in group theory, such as the acyclicity of the Higman group, through the identification of groups with 0-connected, pointed 1-types. Many of our results are formalized as part of the agda-unimath library.
For a partially multiplicative quandle (PMQ) ${\mathcal {Q}}$ we consider the topological monoid $\mathring {\mathrm {HM}}({\mathcal {Q}})$ of Hurwitz spaces of configurations in the plane with local monodromies in ${\mathcal {Q}}$. We compute the group completion of $\mathring {\mathrm {HM}}({\mathcal {Q}})$: it is the product of the (discrete) enveloping group ${\mathcal {G}}({\mathcal {Q}})$ with a component of the double loop space of the relative Hurwitz space $\mathrm {Hur}_+([0,1]^2,\partial [0,1]^2;{\mathcal {Q}},G)_{\mathbb {1}}$; here $G$ is any group giving rise, together with ${\mathcal {Q}}$, to a PMQ–group pair. Under the additional assumption that ${\mathcal {Q}}$ is finite and rationally Poincaré and that $G$ is finite, we compute the rational cohomology ring of $\mathrm {Hur}_+([0,1]^2,\partial [0,1]^2;{\mathcal {Q}},G)_{\mathbb {1}}$.
We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal $E_\infty $-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures.
We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$-fold delooping of the filtered loop space $E_2$-groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$-cogroupoid object in the $\infty $-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$, as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.
We show that under mild conditions, the connected sum $M\# N$ of simply connected, closed, orientable n-dimensional Poincaré Duality complexes M and N is hyperbolic and has no homotopy exponent at all but finitely many primes, verifying a weak version of Moore’s conjecture. This is derived from an elementary framework involving $CW$-complexes satisfying certain conditions.
Reflexive homology is the homology theory associated to the reflexive crossed simplicial group; one of the fundamental crossed simplicial groups. It is the most general way to extend Hochschild homology to detect an order-reversing involution. In this paper we study the relationship between reflexive homology and the $C_2$-equivariant homology of free loop spaces. We define reflexive homology in terms of functor homology. We give a bicomplex for computing reflexive homology together with some calculations, including the reflexive homology of a tensor algebra. We prove that the reflexive homology of a group algebra is isomorphic to the homology of the $C_2$-equivariant Borel construction on the free loop space of the classifying space. We give a direct sum decomposition of the reflexive homology of a group algebra indexed by conjugacy classes of group elements, where the summands are defined in terms of a reflexive analogue of group homology. We define a hyperhomology version of reflexive homology and use it to study the $C_2$-equivariant homology of certain free loop and free loop-suspension spaces. We show that reflexive homology satisfies Morita invariance. We prove that under nice conditions the involutive Hochschild homology studied by Braun and by Fernàndez-València and Giansiracusa coincides with reflexive homology.
We provide a simple condition on rational cohomology for the total space of a pullback fibration over a connected sum to have the rational homotopy type of a connected sum after looping. This takes inspiration from a recent work of Jeffrey and Selick, in which they study pullback fibrations of this type but under stronger hypotheses compared to our result.
Ganea proved that the loop space of $\mathbb{C} P^n$ is homotopy commutative if and only if $n=3$. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but $\mathbb{C} P^3$ are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds $G/T$ for a maximal torus T of a compact, connected Lie group G.
Let $G$ be a finite group with cyclic Sylow $p$-subgroups, and let $k$ be a field of characteristic $p$. Then $H^{*}(BG;k)$ and $H_*(\Omega BG{{}^{{}^{\wedge }}_p};k)$ are $A_\infty$ algebras whose structure we determine up to quasi-isomorphism.
For the $p$-localized sphere $\mathbb {S}^{2m-1}_{(p)}$ with $p >3$ a prime, we prove that the homotopy nilpotency satisfies $\mbox {nil}\ \mathbb {S}^{2m-1}_{(p)}<\infty$, with respect to any homotopy associative $H$-structure on $\mathbb {S}^{2m-1}_{(p)}$. We also prove that $\mbox {nil}\ \mathbb {S}^{2m-1}_{(p)}= 1$ for all but a finite number of primes $p >3$. Then, for the loop space of the associated $\mathbb {S}^{2m-1}_{(p)}$-projective space $\mathbb {S}^{2m-1}_{(p)}P(n-1)$, with $m,n\ge 2$ and $m\mid p-1$, we derive that $\mbox {nil}\ \Omega (\mathbb {S}^{2m-1}_{(p)}P (n-1))\le 3$.
Greenlees has conjectured that the rational stable equivariant homotopy category of a compact Lie group always has an algebraic model. Based on this idea, we show that the category of rational local systems on a connected finite loop space always has a simple algebraic model. When the loop space arises from a connected compact Lie group, this recovers a special case of a result of Pol and Williamson about rational cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie group G such that the Weyl group WGK is connected, then a certain category of rational G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is just the category of rational cofree G-spectra, and this recovers the aforementioned result. Throughout, we pay careful attention to the role of torsion and complete categories.
Let S2n+1{p} denote the homotopy fibre of the degree p self map of S2n+1. For primes p ≥ 5, work by Selick shows that S2n+1{p} admits a non-trivial loop space decomposition if and only if n = 1 or p. Indecomposability in all but these dimensions was obtained by showing that a non-trivial decomposition of ΩS2n+1{p} implies the existence of a p-primary Kervaire invariant one element of order p in $\pi _{2n(p-1)-2}^S$. We prove the converse of this last implication and observe that the homotopy decomposition problem for ΩS2n+1{p} is equivalent to the strong p-primary Kervaire invariant problem for all odd primes. For p = 3, we use the 3-primary Kervaire invariant element θ3 to give a new decomposition of ΩS55{3} analogous to Selick's decomposition of ΩS2p+1{p} and as an application prove two new cases of a long-standing conjecture stating that the fibre of the double suspension $S^{2n-1} \longrightarrow \Omega ^2S^{2n+1}$ is homotopy equivalent to the double loop space of Anick's space.
For certain pairs of Lie groups (G, H) and primes p, Harris showed a relation of the p-localized homotopy groups of G and H. This is reinterpreted as a p-local homotopy equivalence G ≃ (p)H × G/H, and so there is a projection G(p) → H(p). We show how much this projection preserves the higher homotopy associativity.
We introduce a notion of Koszul A∞-algebra that generalizes Priddy's notion of a Koszul algebra and we use it to construct small A∞-algebra models for Hochschild cochains. As an application, this yields new techniques for computing free loop space homology algebras of manifolds that are either formal or coformal (over a field or over the integers). We illustrate these techniques in two examples.
If $K$ is a simplicial complex on $m$ vertices, the flagification of $K$ is the minimal flag complex $K^{f}$ on the same vertex set that contains $K$. Letting $L$ be the set of vertices, there is a sequence of simplicial inclusions $L\stackrel{}{\longrightarrow }K\stackrel{}{\longrightarrow }K^{f}$. This induces a sequence of maps of polyhedral products $(\text{}\underline{X},\text{}\underline{A})^{L}\stackrel{g}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K}\stackrel{f}{\longrightarrow }(\text{}\underline{X},\text{}\underline{A})^{K^{f}}$. We show that $\unicode[STIX]{x1D6FA}f$ and $\unicode[STIX]{x1D6FA}f\circ \unicode[STIX]{x1D6FA}g$ have right homotopy inverses and draw consequences. For a flag complex $K$ the polyhedral product of the form $(\text{}\underline{CY},\text{}\underline{Y})^{K}$ is a co-$H$-space if and only if the 1-skeleton of $K$ is a chordal graph, and we deduce that the maps $f$ and $f\circ g$ have right homotopy inverses in this case.
We investigate the functors from modules to modules that occur as the summands of tensor powers and the functors from modules to Hopf algebras that occur as natural coalgebra summands of tensor algebras. The main results provide some explicit natural coalgebra summands of tensor algebras. As a consequence, we obtain some decompositions of Lie powers over the general linear groups.
Let ξbe an SO(n)-bundle over a simple connected manifold M with a spin structure Q → M. The string class is an obstruction to h1 the structure group LSpin(n) of the loop group bundle LQ → LM to the universal central extension of LSpain(n) by the circle. We prove that the string class vanishes if and only if 1/2 the first Pontrjagin clsss of values when M is a compact simply connected homogeneous space of rank one, a simpiy connected 4 dimensional manifold or a finite product space of those manifolds. This result is deduced by using the Eclesberg spectral sequence converging to the mod p cohomology of LM whose E2-term to the Hochschild homology of the mod p cohomology algebra of M. The key to the consideration is existence of a morphism of algebras, which is injective below degree 3, from an important graded commutator algebra into the Hochschild homology of a certain graded commutative algebra.