To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
RNA interference (RNAi) is a technique used in many insects to study gene function. However, prior research suggests possible off-target effects when using Green Fluorescent Protein (GFP) sequence as a non-target control. We used a transcriptomic approach to study the effect of GFP RNAi (GFP-i) in Nasonia vitripennis, a widely used parasitoid wasp model system. Our study identified 3.4% of total genes being differentially expressed in response to GFP-i. A subset of these genes appears involved in microtubule and sperm functions. In silico analysis identified 17 potential off-targets, of which only one was differentially expressed after GFP-i. We suggest the primary cause for differential expression after GFP-i is the non-specific activation of the RNAi machinery at the injection site, and a potentially disturbed spermatogenesis. Still, we advise that any RNAi study involving the genes deregulated in this study, exercises caution in drawing conclusions and uses a different non-target control.
We develop a technique for representing and preserving cardinals in realizability models, and we apply this technique to define a realizability model of Zorn’s lemma restricted to an ordinal.
This paper builds on the lead author’s keynote address to the Design Society’s 22nd International Conference on Engineering Design in 2019, and in doing so provides a personal perspective on the development of the field of design for sustainability. It begins by describing some of the history of the research from the late 1980s until the present day. This is followed by an analysis of the way in which design for sustainability has been reflected within the International Conference on Engineering Design over the last 30 years, highlighting the way in which the focus has shifted over this time from a focus on recycling and end of life to today where sustainability is playing a leading role in the research. The analysis compares the evolution of the subject with the wider policy and practice perspectives linked to global recognition of the need to move towards Sustainable Development. Finally, the paper reflects on the lessons to be learned from this work and their implications for design research illustrating that engineering design has an opportunity to take more leadership within design for sustainability research and use this to enable change within industry.
This paper investigates the dynamics of an underwater vehicle-manipulator system (UVMS) consisting of a two-link flexible-joint manipulator affixed to an autonomous underwater vehicle. The quasi-Lagrange formulation is utilized in deriving a realistic mathematical model of the UVMS considering joints’ friction, hysteretic coupling between the joints and links, and the nonlinear hydrodynamic forces acting on the system, such as added mass, viscous damping, buoyancy, drag, and vortex-induced forces. Numerical simulations are performed to demonstrate the effects of hydrodynamic forces and system coupling between the vehicle and the manipulator and the joints and the links on the precise positioning of the end effector.
The research presented in this paper explores how engineering students cognitively manage concept generation and measures the effects of additional dimensions of sustainability on design cognition. Twelve first-year and eight senior engineering students generated solutions to 10 design problems. Half of the problems included additional dimensions of sustainability. The number of unique design solutions students developed and their neurocognitive activation were measured. Without additional requirements for sustainability, first-year students generated significantly more solutions than senior engineering students. First-year students recruited higher cortical activation in the brain region generally associated with cognitive flexibility, and divergent and convergent thinking. Senior engineering students recruited higher activation in the brain region generally associated with uncertainty processing and self-reflection. When additional dimensions of sustainability were present, first-year students produced fewer solutions. Senior engineering students generated a similar number of solutions. Senior engineering students required less cortical activation to generate a similar number of solutions. The varying patterns of cortical activation and different number of solutions between first-year and senior engineering students begin to highlight cognitive differences in how students manage and retrieve information in their brain during design. Students’ ability to manage complex requirements like sustainability may improve with education.
This is the first comprehensive overview of the 'science of science,' an emerging interdisciplinary field that relies on big data to unveil the reproducible patterns that govern individual scientific careers and the workings of science. It explores the roots of scientific impact, the role of productivity and creativity, when and what kind of collaborations are effective, the impact of failure and success in a scientific career, and what metrics can tell us about the fundamental workings of science. The book relies on data to draw actionable insights, which can be applied by individuals to further their career or decision makers to enhance the role of science in society. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists and graduate students, policymakers, and administrators with an interest in the wider scientific enterprise.
A new stable adaptive controller based on a neural network for underactuated systems is proposed in this paper. The control scheme has been developed for two underactuated systems as examples. The Furuta pendulum and the Inertia Wheel Pendulum (IWP) have been examined in this paper. The presented approach aims to address the control problem of the given system in swing up, stabilization, and disturbance rejection. To avoid oscillations, two adaptive neural networks (ANNs) are implemented. The first one is used to approximate the equivalent control online and the second one to minimize the oscillations.
Reliability properties associated with the classic models of systems with age replacement have been a usual topic of research. Most previous works have checked the aging properties of the lifetime of the working units using stochastic comparisons among the systems with age replacement at different times. However, from a practical point of view, it would also be interesting to deduce to which aging classes the lifetime of the system belongs, making use of the aging properties of the lifetime of its working units. The first part of this article deals with this problem. Further along, stochastic orderings are established between the systems with replacement at the same time using several stochastic comparisons among the lifetimes of their working units. In addition, the lifetimes of two systems with age replacement are compared as well. This is performed assuming stochastic orderings between the number of replacement until failure, and the lifetimes of their working units conditioned to be less or equal than the replacement time. Similar comparisons are accomplished considering two systems with age replacement where the replacements occur at a random time. Illustrative examples are presented throughout the paper.
Independent data stewardship remains a core component of good data governance practice. Yet, there is a need for more robust independent data stewardship models that are able to oversee data-driven, multi-party data sharing, usage and re-usage, which can better incorporate citizen representation, especially in relation to personal data. We propose that data foundations—inspired by Channel Islands’ foundations laws—provide a workable model for good data governance not only in the Channel Islands, but also elsewhere. A key advantage of this model—in addition to leveraging existing legislation and building on established precedent—is the statutory role of the guardian that is a unique requirement in the Channel Islands, and when interpreted in a data governance model provides the independent data steward. The principal purpose for this paper, therefore, is to demonstrate why data foundations are well suited to the needs of data sharing initiatives. We further examine how data foundations could be established in practice—and provide key design principles that should be used to guide the design and development of any data foundation.
Interaction between a robot and its environment requires perception about the environment, which helps the robot in making a clear decision about the object type and its location. After that, the end effector will be brought to the object’s location for grasping. There are many research studies on the reaching and grasping of objects using different techniques and mechanisms for increasing accuracy and robustness during grasping and reaching tasks. Thus, this paper presents an extensive review of research directions and topics of different approaches such as sensing, learning and gripping, which have been implemented within the current five years.
Quantum systems are modelled as different mathematical structures, depending on their nature and complexity. This chapter considers one of the simplest (discrete-time) models of quantum systems, namely quantum automata. It introduces a way of describing linear-time (dynamic) properties of quantum systems and presents several algorithms for checking certain linear-time properties of quantum automata, for example, invariants andreachability.
Model checking is an algorithmic technique for verification of computing and communication hardware and software. This book extends the technique of model checking for quantum systems. As preliminaries, this chapter introduces basics of model checking for both classical non-probabilistic and probabilistic systems.
This chapter develops model-checking techniques for a much larger class of quantum systems modelled as quantum Markov chains or more generally, quantum Markov decision processes. The differences between quantum automata and quantum Markov systems require us to develop algorithms for the latter that are fundamentally different from those for the former.
This chapter is intended to introduce some basic notions of quantum theory needed in the subsequent chapters for the reader who is not familiar with them. Quantum mechanics is a fundamental physics subject that studies the phenomena at the atomic and subatomic scales. This chapter introduces the required mathematical tools and presents the postulates mainly through their mathematical formalisms. The physics interpretation of these is only very briefly discussed.