To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Turbulent separating and reattaching flows are known to exhibit low-frequency fluctuations manifested in a large-scale contraction and expansion of the reverse-flow region. Previous experimental investigations have been restricted to planar measurements, while the computational cost to resolve the low-frequency spectrum with high-fidelity simulations currently appears to be unaffordable. In this article, we make use of volumetric measurements to reveal the low-frequency dynamics of a turbulent separation bubble (TSB) formed in the fully turbulent flow past a smooth backward-facing ramp. The volumetric velocity field measurements cover the entire separated flow region over a domain with a spanwise extent of $S=0.6\, {\textrm{m}}$. Spectral proper orthogonal decomposition (SPOD) of the velocity fluctuations reveals low-rank low-frequency behaviour at Strouhal numbers ${\textit{St}}\lt 0.05$, which was also observed in previous planar measurements. However, in contrast with the interpretation of a two-dimensional contraction/expansion motion, the low-frequency dynamics is shown to be inherently three-dimensional, and governed by large elongated structures with a spanwise wavelength of approximately $S/2$. A low-order model constructed with the leading SPOD mode confirms substantial changes of the TSB extent in the centre plane, linking it to the modal pattern that is strongly non-uniform in the spanwise direction. The findings presented in this study promote a more complete understanding of the low-frequency dynamics in turbulent separated flows, thereby enabling novel modelling and control approaches.
We present a mathematical solution for the two-dimensional linear problem involving acoustic-gravity waves interacting with rectangular barriers at the bottom of a channel containing a slightly compressible fluid. Our analysis reveals that, below a certain cutoff frequency, the presence of a barrier inhibits the propagation of acoustic-gravity modes. However, through the coupling with evanescent modes existing in the barrier region, we demonstrate the phenomenon of ‘tunnelling’ where the incident acoustic-gravity wave energy can leak to the other side of the barrier, creating a propagating acoustic-gravity mode of the same frequency. Notably, the amplitude of the tunnelling waves exponentially decays with the width of the barrier, analogous to the behaviour observed in quantum tunnelling phenomena. Moreover, a more general solution for multi-barrier and multi-modes is discussed. It is found that tunnelling energy tends to transform from an incident mode to the lowest neighbouring modes. Resonance due to barrier length results in more efficient energy transfer between modes.
This study explores interfacial waves in a three-layer fluid system, focusing on the coupling effects between the two interfaces. These effects include resonance induced by inertial coupling and damping caused by viscous coupling. A linear theoretical framework is developed to describe the coupled wave motion and evaluate the impact of interfacial coupling under viscous damping. Additionally, a semi-analytical model is introduced to accurately capture resonance frequency shifts and phase differences due to viscosity. The spiral structure of interfacial waves predicted by the models is confirmed experimentally using the background oriented Schlieren (BOS) method. Further, the model is validated by excellent agreement between theoretical predictions and ultrasonic measurements of wave amplitudes and phase differences. Finally, the study examines mechanical coupling and energy transfer between interfaces under external forcing, elucidating the formation of spiral waves. The accurate treatment of viscous boundary conditions by the semi-analytical model also enables its extension to multilayer fluid systems.
Fossils can reveal large differences between the geographic range that a species could potentially inhabit and the more restricted realized distribution where individuals presently occur. Extant great penguins (Aptenodytes Miller, 1778) include emperor and king penguins, which have polar and subpolar ranges, respectively. New evidence now reveals that the fundamental niche for great penguins includes much warmer environments. Here, we report the first skull of an extinct great penguin that lived in Zealandia during the mid-Piacenzian Warm Period (mPWP) when global temperatures were ~3°C above those of the preindustrial era. Because estimated sea-surface temperatures in Zealandia during the mPWP were 10–20°C warmer than those experienced by living emperor and king penguins, we hypothesize that the exclusion of great penguins from lower latitudes today reflects constraints more complex than climate pressures alone. Terrestrial predation might be an overlooked factor because Aptenodytes appears to have gone extinct in Zealandia coincident with the arrival of large raptors like Haast’s eagle, Hieraaetus moorei (Haast, 1872), and Forbes’ harrier, Circus teauteensis Forbes, 1892.
Humanity’s impact on the planet is undeniable. Fairly and effectively addressing environmental problems begins with understanding their causes and impacts. Is over-population the main driver of environmental degradation? Poverty? Capitalism? Poor governance? Imperialism? Patriarchy? Clearly these are not technical questions, but political ones.
Updated to cover new debates, data, and policy, and expanded to include chapters on colonialism, race and gender, and the impacts of energy and resource extraction, this book introduces students to diverse perspectives and helps them develop an informed understanding of why environmental problems occur.
How the international community should act is deeply contested. Guiding students through the potential responses, including multilateral diplomacy, transnational voluntary action, innovative financial mechanisms, problem displacement, consumer-focused campaigns, and resistance, this book explains the different forms of political action, their limitations and injustices.
Online resources include lecture slides, a test bank for instructors, updated weblinks to videos, and suggested readings for students.
Humanity’s impact on the planet is undeniable. Fairly and effectively addressing environmental problems begins with understanding their causes and impacts. Is over-population the main driver of environmental degradation? Poverty? Capitalism? Poor governance? Imperialism? Patriarchy? Clearly these are not technical questions, but political ones.
Updated to cover new debates, data, and policy, and expanded to include chapters on colonialism, race and gender, and the impacts of energy and resource extraction, this book introduces students to diverse perspectives and helps them develop an informed understanding of why environmental problems occur.
How the international community should act is deeply contested. Guiding students through the potential responses, including multilateral diplomacy, transnational voluntary action, innovative financial mechanisms, problem displacement, consumer-focused campaigns, and resistance, this book explains the different forms of political action, their limitations and injustices.
Online resources include lecture slides, a test bank for instructors, updated weblinks to videos, and suggested readings for students.
Large-scale circulation (LSC) dynamics have been studied in thermal convection driven by heat-releasing particles via the four-way coupled Euler–Lagrange approach. We consider a wide range of Rayleigh–Robert number (${\textit{Rr}}=4.97\times 10^{5} - 4.97 \times 10^{8}$) and density ratio ($\hat {\rho }_r=1- 1000$) that characterize the thermal buoyancy and the particle inertia, respectively. An intriguing flow transition has been found as $\hat {\rho }_r$ continuously increases, involving in sequence three typical LSC regimes, i.e. the bulk-flow-up regime, the marginal regime and the bulk-flow-down (BFD) regime. The comprehensive influence of the LSC regime transition is demonstrated by examining the key flow statistics. As integral flow responses, the heat transfer efficiency and flow intensity change substantially when the LSC regime transition happens, and the thermal boundary layer thicknesses at the top and bottom walls exhibit similar alterations. Significant local accumulation of particles occurs as $\hat {\rho }_r$ increases to a sufficiently high value, resulting in a great modification in the flow dynamics. Specifically, particles aggregate near the sidewalls and heat the local surrounding fluid to generate rising warmer plumes that drive the LSC regime transition. Of interest, well-patterned cellular structures of particles take place near the top wall and obtain notable deviation from the thermal convection cells for the BFD regimes. A mechanical interpretation is proposed and substantiated based on a conceptual vortex–particle model, namely, the centrifugal motion of heat-releasing particles that is confirmed to play a driving role for the LSC regime transition.
A novel particle-resolved direct numerical simulations (PR-DNS) method for non-spherical particles is developed and validated in the open-source MFiX (Multi-phase Flow with Interphase eXchanges) code for simulating the suspension of non-spherical particles and fluidisation. The model is implemented by coupling superquadric Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) with the immersed boundary method. The model was first validated by applying it to analyse fluid dynamic coefficients ($C_{\!D} , C_{\!L} , C_{\!T}$) of superellipsoids and cylinders at different Reynolds numbers, and the PR-DNS results closely matched those of previous methods, demonstrating the reliability of the current PR-DNS approach. Then, the model was applied to the simulation of the fluidisation of spheres and cylinders. The PR-DNS results were compared with both particle-unresolved superquadric DEM-CFD simulation and experimental data. The pressure drop, height distribution and orientation distribution of particles were analysed. The results show that the PR-DNS method provides a reliable method for reproducing fluidisation experimental results of non-spherical particles. In addition, the comparison of the drag correction coefficients predicted by existing models with that obtained from PR-DNS results indicates the need for a new drag model for particle-unresolved simulation of non-spherical particles.
The effects of the external intermittent behaviour on the Kolmogorov constants $C_{k1}$ and $C_2$ in spectral and the physical spaces are investigated using high-resolution direct numerical simulations of a turbulent plane jet. Well-defined $- 5/3$ energy spectrum and $2/3$ structure function can be found in the intermittent flows without large-scale vortex shedding. For different cross-wise positions, the profiles of conditional energy spectra and conditional structure functions exhibit self-similarity at small and intermediate scales when normalised by the conditional Kolmogorov scale of the turbulent region. The conditional Kolmogorov constants are close to those of the fully turbulent flow. The constants $C_{k1}$ and $C_2$ are found to have a power-law dependence on the intermittency factor $\gamma$, that is, $C_{k1}\sim \gamma ^{1/3}$ and $C_{2}\sim \gamma ^{1/3}$, except for the scaling of the structure function in the highly intermittent region with $\gamma =0.25$. In the highly intermittent region, e.g. $\gamma =0.25$, the scaling in the conditional structure function can be considerably influenced by the blocking/sheltering mechanisms of the turbulent/non-turbulent interface (TNTI), leading to slight deviations from self-similarity. We further confirm that the conditional structure function recovers self-similarity after excluding a turbulent region at an average distance of approximately $20$ Kolmogorov length scales from the outer edge of the TNTI, which is comparable to the mean thickness of the TNTI. These findings contribute to the modelling of the edge of a turbulent region.
Humanity’s impact on the planet is undeniable. Fairly and effectively addressing environmental problems begins with understanding their causes and impacts. Is over-population the main driver of environmental degradation? Poverty? Capitalism? Poor governance? Imperialism? Patriarchy? Clearly these are not technical questions, but political ones.
Updated to cover new debates, data, and policy, and expanded to include chapters on colonialism, race and gender, and the impacts of energy and resource extraction, this book introduces students to diverse perspectives and helps them develop an informed understanding of why environmental problems occur.
How the international community should act is deeply contested. Guiding students through the potential responses, including multilateral diplomacy, transnational voluntary action, innovative financial mechanisms, problem displacement, consumer-focused campaigns, and resistance, this book explains the different forms of political action, their limitations and injustices.
Online resources include lecture slides, a test bank for instructors, updated weblinks to videos, and suggested readings for students.
The inertial migration of hydrogel particles suspended in a Newtonian fluid flowing through a square channel is studied both experimentally and numerically. Experimental results demonstrate significant differences in the focusing positions of the deformable and rigid particles, highlighting the role of particle deformability in inertial migration. At low Reynolds numbers (${Re}$), hydrogel particles migrate towards the centre of the channel cross-section, whereas the rigid spheres exhibit negligible lateral motion. At finite ${Re}$, they focus at four points along the diagonals in the downstream cross-section, in contrast to the rigid particles which focus near the centre of the channel face at similar ${Re}$. Numerical simulations using viscous hyperelastic particles as a model for hydrogel particles reproduced the experimental results for the particle distribution with an appropriate Young’s modulus of the hyperelastic particles. Further numerical simulations over a broader range of ${Re}$ and the capillary number ($Ca$) reveal various focusing patterns of the particles in the channel cross-section. The phase transitions between them are discussed in terms of the inertial lift and the lift due to particle deformation, which would act in the direction towards lower shear. The stability of the channel centre is analysed using an asymptotic expansion approach to the migration force at low ${Re}$ and $Ca$. The theoretical analysis predicts the critical condition for the transition, which is consistent with the direct numerical simulation. These experimental, numerical and theoretical results contribute to a deeper understanding of inertial migration of deformable particles.
Rotor–stator interactions in turbomachines are characterised by a complex interplay of hydrodynamic instabilities, acoustic pressure waves and receptivity mechanisms, as well as the collision of coherent structures with the blade geometry. An unsteady dual analysis of self-excited instabilities and flow interactions, exemplified by a simple model compressor stage under subsonic conditions, is proposed and presented. Using a low-dissipation sliding-plane implementation, instability-resolving nonlinear-adjoint looping simulations provide detailed sensitivity information that allows for the dissection of the full flow into sub-components linked to distinct flow phenomena. This sensitivity information further links observed flow behaviour to its hydrodynamic or acoustic origin, thereby laying the foundation for a cause-and-effect analysis and for flow control.