To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article reviews and assesses recent progress in atomic layer deposition (ALD) and highlights how the field of ALD is expanding into new applications and inspiring new vapor-based chemical reaction methods. ALD is a unique chemical process that yields ultra-thin film coatings with exceptional conformality on highly non-uniform and non-planar surfaces, often with subnanometer scale control of the coating thickness. While industry uses ALD for high-κ dielectrics in the manufacturing of electronic devices, there is growing interest in low-temperature ALD and ALD-inspired processes for newer and more wide-ranging applications, including integration with biological and synthetic polymer structures. Moreover, the conformality and nanoscale control of ALD film thickness makes ALD ideal for encapsulation and nano-architectural engineering. Articles in this issue of MRS Bulletin present details of several growing interest areas, including the extension of ALD to new regions of the periodic table, and molecular layer deposition and vapor infiltration for synthesis of organic-based thin films. Articles also discuss ALD for nanostructure engineering and ALD for energy applications. A final article shows how the challenge of scaling ALD for high rate nanomanufacturing will push advances in plasma, roll-to-roll, and atmospheric pressure ALD.
Atomic layer deposition (ALD) not only presents a direct way to prepare nanomaterials when combined with templates, but also allows surface engineering to fine-tune the properties of the material. Here, we review recent progress in the field of nanostructured materials and devices that have been fabricated by ALD. Various materials, including semiconducting, magnetic, noble metallic, and insulating materials, can be used to form three-dimensional (3D), complex nanostructures with controlled composition and physical properties. We begin this review with ALD nanomaterials that can be prepared from porous templates with a 2D pore arrangement, such as anodic aluminum oxide, and advance toward opal structures with a 3D pore arrangement. We also discuss surface engineering by ALD on existing nanowires/nanotubes, devices, and chemical patterns that has the potential for application in high-performance transistors, sensors, and green energy conversion. Finally, we provide perspectives for future device applications that could arise from ALD nanomaterials.
Ionic motion and electrochemistry in bulk materials and at their surfaces have long been studied for their relevance in several areas of science and technology, ranging from ionic conductors to batteries to fuel cells. The ability to engineer materials at the nanometer scale, however, has made these concepts even more relevant. This is due to the large surface-to-volume ratios typical of nanostructures. This implies, for instance, that chemical reactivity and defect motion at surfaces or interfaces are enhanced or may be fundamentally different compared to their bulk counterparts. In addition, nominally modest voltages or differences in chemical potential when applied across nanoscale distances can produce large electric fields and diffusive forces. While all of this may complicate the interpretation of experimental results, it also presents us with new opportunities for materials engineering. In this article, we will briefly review the current research status of several systems where ionic motion and electrochemical effects are of particular importance. These include resistive switching systems, oxide heterostructures, ferroelectric materials, and ionic liquids. We will report on experimental results and also emphasize open questions regarding their interpretation. We will conclude by discussing future research directions in the field.
Unbalanced magnetron sputtering (UBMS) is suitable for the preparation of hard and hydrogen-free diamond-like carbon (DLC) films. Since those films generally suffer from internal stresses and bad adhesion, the addition of a methane source offers two advantages: (i) the control of the film properties by variation of the hydrogen content and (ii) a pretreatment of methane plasma source ion implantation (PSII), which results in a gradient carbon layer within the substrates, ensuring the adhesion of the subsequently deposited DLC films. PSII and UBMS were combined to prepare DLC films on stainless steel substrates and silicon wafers. Different amounts of methane were added to the working gas, argon, to investigate the effect of the hydrogen content on the film properties, i.e., hardness, adhesion, and friction coefficient. Composition and chemical structure of the films were investigated by depth profiling (secondary-ion mass spectrometry) and Raman spectroscopy. Smooth adhesive films could be obtained with the lowest friction coefficient for small additions of methane as a hydrogen source during the sputtering process.
Fluid flow in biological tissues is important in both mechanical and biological contexts. Given the hierarchical nature of tissues, there are varying length scales at which time-dependent mechanical behavior due to fluid flow may be exhibited. Here, spherical nanoindentation and microindentation testings are used for the characterization of length scale effects in the mechanical response of hydrated tissues. Although elastic properties were consistent across length scales, there was a substantial difference between the time-dependent mechanical responses for large and small contact radii in the same tissue specimens. This difference was far more obvious when poroelastic analysis was used instead of viscoelastic analysis. Overall, indentation testing is a fast and robust technique for characterizing the hierarchical structure of biological materials from nanometer to micrometer length scales and is capable of making quantitative material property measurements to do with fluid flow.
When thin nanomaterials spontaneously deform into nonflat geometries (e.g., nanorods into nanohelices, thin sheets into ruffled forms), their properties may change by orders of magnitude. We discuss this phenomenon in terms of a formal mathematical concept: codimension c = D − d, the difference between the dimensionality of space D, and that of the object d. We use several independent examples such as the edge stress of graphene nanoribbons, the elastic moduli of nanowires, and the thermal expansion of a modified bead-chain model to demonstrate how this framework can be used to generically understand some nanomaterial properties and how these properties can be engineered by using mechanical constraints to manipulate the codimension of the corresponding structure.
When an elastic half-space is subjected to both normal and tangential contact, the ratio of normal and tangential contact stiffnesses can be measured by various scanning force microscopy techniques. For elastically isotropic solids, this stiffness ratio depends on Poisson’s ratio as given by the Mindlin solution. An anisotropic elastic contact analysis here shows the difference between the effective Poisson’s ratio as defined from the stiffness ratio and its uniaxial counterpart with respect to various crystal structures and various normal/tangential contact directions. Closed-form analytical solutions of effective indentation moduli are derived for materials with at least one plane of transverse isotropy. Since the Sneddon (normal contact) and Mindlin (lateral contact) solutions are derived under different frictional conditions, finite element simulations were performed which show that the effects of elastic dissimilarity and contact shape are generally small but not negligible. The predicted dependence on crystallographic orientation and elastic anisotropy has been compared favorably with previously reported multiaxial contact experiments for a number of cubic single crystals. Implications for atomic force microscopy based experiments are also discussed.