To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the epistemic shift conventionally called the Scientific Revolution, the study of nature came to depend on images. Investigation of the plant world, which was still tied to medical aims but was beginning to take shape as the morphological discipline we now call botany, is a case in point. The implementation of new printing techniques in the late fifteenth century enabled the production of publications that featured images that were precisely reproducible, at least in theory, and therefore understood as trustworthy. Gradually, standard classical texts such as herbals, which had previously circulated as hand-copied manuscripts, were made available in printed form and came to be heavily illustrated (Figure 31.1). The accessibility of standard visual references in relatively affordable printed editions permitted enterprising doctors, pharmacists, and amateurs of the plant world to compare the plants they had at hand and that grew in their native lands with the plants described by classical authorities, among them the Greek naturalists Theophrastus (third century B.C.E.), Dioscorides (first century C.E.), and the Roman encyclopedist Pliny the Elder (d. 79 C.E.). Numerous varieties not contained in the classical texts were “discovered” by learned botanists throughout Europe. Like prints, drawings also served as a basis for comparison of local varieties with the plants the classical authors had described and, in those cases where the plants at hand could not be matched with plants previously described, came to serve as means for recording and cataloguing them.
If one looks at changes in perceptions of nature through the eyes of physicians, several fundamental themes stand out when considering the sixteenth and seventeenth centuries. Physicians were a highly literate group who expressed themselves on paper while also exhibiting great sensitivity to changes in both the science and the art of their discipline. They were educated in one of the three higher university faculties that awarded a doctorate (the others being law and theology). When those holding the medical doctorate (M. D.) referred to themselves as physicians, they were associating themselves with the study of nature, because the word for nature is Latinized from the Greek word for nature, physis, like our modern “physics” (see Blair, Chapter 17, this volume). Most universities had therefore accepted “physic” as one of the three higher faculties because of the argument that the science of physic was worthy of academic study even if the art of medicine was not. As Aristotle had put it, insofar as physic was a science, it “does not theorize about the individual but the class of phenomena.” Moreover, as Aristotle had also made clear, the rigorous generalizations of science were related to causal reasoning: That is, in its scientific aspects, physic offered not only generalizable but also causal explanations. It was the certainty of causal natural explanation that made physic a science.
By the end of the seventeenth century, however, the science of physic had been fundamentally altered. When the eminent physician Samuel Garth (1661–1719) addressed his colleagues in honor of the famous William Harvey (1578–1657) and spoke about their common profession of “physick,” he revealed a view quite different from Aristotle’s.
Classrooms and libraries called up radically different images in the minds of sixteenth- and seventeenth-century writers. The ideal classroom, as described by teachers such as Desiderius Erasmus (1465–1536) and embodied in public rooms in universities and colleges, professors’ teaching rooms in their own houses, and tutors’ rooms in palaces and noble villas, was a space of moderate size, designed and equipped as systematically as one of Henry Ford’s factories to produce one sort of product: an educated Christian gentleman. A high pulpit, surrounded by desks with benches, dramatized the central role of the teacher and the knowledge he provided. Axioms in Greek and Latin and pictures of plants, animals, and ancient heroes, the latter equipped with moralizing captions, helped students both to memorize and to internalize their teacher’s lessons. The only voice to be heard, in theory, was that of the teacher, explicating an assigned text. And the only knowledge transmitted was that presented in the texts – ancient knowledge authenticated by its patina of age and cultural authority, and presented in the true, moral light by an informed and upright teacher.
The ideal library, by contrast, offered a radically different vision of knowledge. As Ioannes Meursius portrayed it in his 1625 celebration of Leiden University, a good library was housed in a spacious room, illuminated by tall windows (Figure 10.1). Its books, arranged in bookcases organized by subject matter, covered the intellectual waterfront: They dealt with modern history, mathematics, and astronomy, as well as classical literature and history.
Questions of proof and persuasion are important in the history of the sciences of any period, but they are particularly pressing in the case of early modern Europe. The sixteenth and seventeenth centuries saw more self-conscious theoretical reflection on how to discover and confirm the truths of nature than any period before or since; the same period also manifested a huge range of practical strategies by which investigators of the natural world set about demonstrating their findings and convincing their audiences of their claims. Studying these strategies of proof and persuasion has opened up vistas of opportunity for historians of the sciences in early modern Europe. In a range of disciplines, from the social history of medicine to the history of philosophy, historians of the period have argued for the ineradicable significance of forms of proof and persuasion in understanding their various objects of inquiry. The rhetorical form of texts and even objects has come to be seen as constitutive of their meaning, not separable from it. Furthermore, an increasing number of studies have shown how early modern physicians, mathematical practitioners, and natural philosophers all exploited the different and historically specific resources of proof and persuasion that they had at their disposal.
The study of proof and persuasion provides a further opportunity to the historian: It offers a means of bridging the gap between a text (or a practice) and its reception. As the reception, rather than the genesis, of developments in the sciences has become an increasingly important aspect of historiography, it has also become increasingly apparent that this reception history is often extremely difficult to reconstruct.
From the beginning of European expansion, natural knowledge was both its precondition and its constantly developing product. Over the course of the fifteenth century, the Portuguese voyages of exploration in the western and southern Atlantic and along the coast of Africa promoted the development of new knowledge regarding marine navigation and orientation, as well as the ability to rule the seas. They led to new experiences as new seas were sailed and new coasts explored, as the equator was crossed, and as the stars of the southern hemisphere were described. Geography emerged as an independent discipline concerned with the systematic description of the inhabited earth. Encounters with previously unknown lands, peoples, animals, plants, and minerals expanded the frontiers of the ancient and medieval knowledge of the world and changed theoretical understandings of nature. As Peter Martyr of Anghiera (1457–1526), chronicler for King Ferdinand of Aragon, put it, “our pregnant ocean here bears new children every hour.”
Peter Martyr’s early accounts of the “New World” testify to the richness and scope of the European quest for natural knowledge in the first decades of the sixteenth century. In 1493, a few months after the return of Columbus, the Italian scholar began his tenure as royal chronicler by relating reports of the western discoveries. His accumulated works, consisting of letters to his friend Cardinal Ascanio Sforza and other – mostly Roman – personalities, were included in all important European travel collections from 1507 onward. In 1516, he combined the thirty books (in three “decades”) of his writings into a single edition, published in Alcalà and dedicated to Charles, the young king of Spain who later became Emperor Charles V.
Where did early modern natural inquiry take place? Research by historians of science has begun to suggest that many of the activities crucial to the Scientific Revolution took place not only in such recognizably new and innovative sites as botanical gardens, anatomy theaters, laboratories, and the quarters of scientific societies but also – and often simultaneously – within the seemingly humble and prosaic spaces of natural inquirers’ own homes and households. These domestic spaces in fact saw the production of natural knowledge of all kinds, as their occupants used them as places not just to sleep but also to think, write, calculate, observe, and experiment on natural phenomena. Furthermore, while doing so, they frequently ended up enlisting household members in these projects. In this way, homes and households became crucial sites for the pursuit of natural knowledge in early modern Europe.
Few historians of science have paid attention to these kinds of “private” spaces. One of the main reasons for this is almost certainly the way in which, over the past several centuries, scientific work has gradually come to be conceptualized as occuring primarily outside the home. This particular assumption is itself a historical artifact, stemming from modern changes in the organization of work more broadly. During the nineteenth century in particular, as more and more people abandoned home-based workshops and began to travel to new places of employment, newly labeled “scientists” likewise increasingly came to work outside the home in institutional spaces that were perceived as religiously and emotionally neutral. In the process, considerable ideological boundaries were erected between work and family, and between public and private realms, which have continued to shape modern thinking.
“L’esprit n’a point de sexe” (“the mind has no sex”), declared François Poul-lain de la Barre (1647–1723) in 1673 in an effort to level what he considered “the most remarkable of all prejudices”: the inequality of the sexes. An ardent Cartesian, he set out to demonstrate that the mind – distinct from the body – has no sex. New attitudes toward women, such as those voiced by Poullain and others, raised questions about female participation in natural knowledge, itself a novel enterprise struggling for recognition within established hierarchies. In the sixteenth and seventeenth centuries, the relation of natural inquiry to church, king, households (grand and humble), princely coffers, and global and local marketplaces was in a state of flux. Important questions remained to be answered about natural knowledge – its ideals and methods, its proper limits, and who should mold them. The looser institutional organization and openings in attitudes allowed women to enter into natural inquiry through a number of informal arrangements and, in some cases, make important contributions to natural knowledge.
At a time when participation in natural inquiry was regulated to a large extent by social standing, men and women seeking to understand nature came primarily from two distinct social groups: learned elites and artisans (see Shapin, Chapter 6, this volume). The humanistic literati mixed in courtly circles, scientific academies, and salons, while skilled craftsmen and craftswomen fashioned telescopes and astrolabes, made maps, and refined techniques for capturing with exactitude the minutest details of natural phenomena. In addition to these two groups, European peasants, fishermen, women who gathered medicinal herbs, and others served as informants to naturalists.
This chapter is devoted to mechanics in the sixteenth and seventeenth centuries. Following a distinction traceable at least to Hero of Alexandria (first century) and Pappus of Alexandria (third century), mechanics can be divided into rational and practical (or applied). The former is a mathematical science normally proceeding by demonstration, the latter a manual art with practical aims. Here I privilege rational over practical mechanics, which is discussed elsewhere in this volume (see Bennett, Chapter 27).
A major problem with writing a history of mechanics during this period concerns the changing disciplinary boundaries and meaning of the term “mechanics.” Traditionally, mechanics had dealt with the mathematical science of simple machines and the equilibrium of bodies. In the second half of the seventeenth century, however, mechanics became increasingly associated with the science of motion. Therefore, in dealing with an earlier period, it is useful to chart not simply the transformations of mechanics as it was understood before the second half of the seventeenth century but also the relevant transformations in the science of motion that belong more properly to natural philosophy.
Mechanics and natural philosophy differed widely intellectually, institutionally, and socially in the period covered by this chapter. Even rational mechanics retained a practical and engineering component but it was also progressively gaining a higher intellectual status with the editions of major works from antiquity and with a renewed emphasis on its utility; initially its role in the universities was at best marginal, however. By contrast, natural philosophy had been a major academic discipline for centuries and had closer links to theology than to the practical arts.
During the early modern period, music (of which acoustics is an offspring) and optics belonged to the “mixed mathematical” sciences. “Mixed mathematics” refers here to those physical disciplines that could be treated by extensive use of arithmetic or geometric techniques, such as astronomy, mechanics, optics, and music (see Andersen and Bos, Chapter 28, this volume).
The study of sound in the sixteenth and seventeenth centuries cannot be properly considered to belong to any single discipline but rather is found at the intersection of several fields, including music theory, mechanics, anatomy, and natural philosophy. Thus, no single mixed mathematician of the sixteenth or the seventeenth century can be properly said to have specialized in acoustics. Among the early modern scholars who contributed to the study of sound were mixed mathematician Giovanni Battista Benedetti (1530–1590), musician Vincenzo Galilei (1520–1591), and natural philosopher Robert Boyle (1627–1691), which gives some idea of the variety of disciplinary approaches. It is nonetheless safe to say that the study of music theory provided the common background on the basis of which further studies on sound phenomena would be undertaken. Moreover, in the area of natural philosophy, the classical treatises De sensu (On the Senses), De audibilibus (On Things Audible), De anima (On the Soul), and the Problemata (Problems), all attributed to Aristotle at the time, contained material pertaining to acoustic phenomena and were well known to sixteenth- and seventeenth-century scholars.
The practitioners involved in the study of sound were socially disparate as well, ranging from the choirmaster of St. Mark’s in Venice, Gioseffo Zarlino (1517–1590); to a schoolteacher in the Netherlands, Isaac Beeckman (1588–1637); to a Minim friar in Paris, Marin Mersenne (1588–1648).
Science and imaginative literature have made a dynamic pair of objects for study ever since they were sharply and categorically separated as activities of the mind and kinds of representations: To study them in tandem, at least for literary historians and critics, is to confront the embarrassing question, What is “literature”? – a question harder and harder to answer, and not to be answered here. The relations between science and literature (and early printed book production) have seemed especially interesting since about 1980, as scholars in historical fields have come more and more to poach on each other’s lands and goods. During the advent of cultural studies, especially in the work and thought of certain French historians and philosophers interested in science (e.g., Gaston Bachelard, Georges Canguilhem, Michel Foucault, Michel Serres, and Michel de Certeau), the canons of literary history expanded as the study of “discourse” and “representation” relieved it of an older focus restricted to particular authors and genres.
Marjorie Hope Nicolson, perhaps the greatest student of “science and literature” writing in English in the first half of the twentieth century, is known above all for her work on the opening up of “space” (in its modern sense) to the literary imagination in such books as Newton Demands the Muse (1946), Voyages to the Moon (1948), and the articles collected in Science and Imagination (1956). Nicolson’s primary interest was in canonical English literature and the opportunities provided for it by the materials and potential metaphors of the “new science.” Her contemporary, the British historian Frances Yates, brought a similar sense of the relationship of (pan-European) scientific activity and imaginative literature to her account of Love’s Labours Lost (1598) and its real-life model (according to Yates), London’s late sixteenth-century “School of Night,” to which such Renaissance luminaries as Walter Raleigh (ca. 1554–1618), mathematician, linguist, and colonialist Thomas Harriot (1560–1621), the poet George Chapman (ca. 1559–1634), and the renegade philosopher Giordano Bruno (1548–1600) belonged or were visitors.
In the sixteenth and seventeenth centuries, the term “mechanical” had three main senses – all interconnected and all relevant to the history of science. The traditional meaning referred to activities that were practical or manual. In the sixteenth century, the word acquired a new meaning, a revival of a classical sense, connecting it specifically to machines and their design and management. Finally, in the seventeenth century, “mechanical” came also to refer to a doctrine about the natural world. The phrase “mechanical arts” – artes mechanicae in postclassical Latin – had equivalents in a number of European languages. When linked to the first two of these senses, it referred to the skillful practice of a particular practical discipline or handicraft, including the working of machines.
The disciplinary relationships and boundaries observed in the activities and writings of contemporary practitioners of the mechanical arts confirm the relationship of machinery to a wider context of practical work. They also show the importance, increasing over the course of the sixteenth and seventeenth centuries, of bringing mathematics into the characterization of the “mechanical.” This is both because the design and management of machines came to be regarded as a mathematical art and because mathematics became engaged in a range of other practical work. It would be difficult and anachronistic, for example, to define a boundary between the mechanical arts and practical mathematics, as carried on by people we might more readily call “mathematical practitioners” than mechanicians or mechanics, as the practical mathematical disciplines, such as architecture, engineering, gunnery, and surveying (often referred to in English as “the mathematicals”), were directly concerned with machines.
The story of the changing forms of explanation adopted in the early modern sciences is too often told as a story of the wholesale rejection of the systematic Aristotelian treatment of causal questions that flourished in medieval as well as ancient science. Narratives of this sort have ignored a promising alternative way of understanding the multifaceted transformation that occurred in early modern natural philosophers’ beliefs about causality. By focusing instead on the Aristotelian tradition’s contributions to the development of rival forms of explanation, it becomes possible to characterize these new sorts of explanations against a rich conceptual background. Of course, scientific innovators in the period 1500–1800 did widely reject Aristotle’s account of the four kinds of causes as a source of acceptable theories in the specific sciences. But a more tempered view of this rejection may better reveal how the new sorts of explanations were actually conceived by their originators.
THREE NOTABLE CHANGES IN EARLY MODERN SCIENTIFIC EXPLANATIONS
This chapter considers three notable changes in early modern scientific explanations. The first was a change in the overall purpose of scientific research that was initiated by those critics of Aristotelianism who relinquished Aristotle’s goal of understanding the form of each natural substance. Rather than trying to elucidate each substance’s form, early modern innovators in the specific sciences, as well as natural philosophy, sought to determine the fundamental constituent parts – whether elements or atoms – of each kind of material body and also to identify the lawlike regularities exhibited in the organization and motions of these fundamental elements or atoms.
Experimental philosophy came to prominence on a wave of coffee. In the mid-1650s, a group of aspiring Oxford scholars met regularly at a new kind of place. Something like an alcohol-free tavern, it was presided over by an apothecary named Arthur Tillyard. There, spurred by liberal doses of thick, black liquid, they debated the new ideas transforming natural philosophy and the mathematical sciences. Peter Staehl, Robert Boyle’s (1627–1691) German chymist, mounted experimental displays at the same location. This club of scholars moved to London in 1660 and reemerged as what would soon be called the Royal Society. At about the same time, the novel setting in which these rendezvous had originally occurred – the coffeehouse – also moved to London and began an extraordinary surge in popularity there. Together, the coffeehouse and the Royal Society would become perhaps the two most distinctive social spaces of Restoration England. The implications of their advent would stretch beyond England itself. What began in Oxford and London would grow to affect the fortunes of the sciences throughout Western Europe.
Experiment was not the only controversial investigatory practice fostered by the rise of the coffeehouse. In 1659, political philosopher James Harrington (1611–1677) – whose Oceana (1656) had founded republicanism on a natural philosophy of circulating particles – organized regular debates at Miles’ Coffeehouse, in Westminster. Here soldiers, political figures, and ordinary citizens participated in exhilarating exchanges that ranged broadly over the history and philosophy of government. The Rota, as Harrington called this forum, both generated new knowledge and, far more importantly, exemplified a new way of proposing, debating, and resolving claims in general.
The Middle Ages took magic seriously, though it was not a key issue for that period of European history, as it had been in late antiquity. Many medieval theologians treated magic with fear or loathing, in fact, and philosophers were often indifferent to it. But in the late fifteenth century, magic enjoyed a remarkable rebirth, acquiring the energy that kept it at the center of cultural attention for nearly two hundred years, as great philosophers and prominent naturalists tried to understand or confirm or reject it. After Marsilio Ficino (1433–1499) took the first steps in the renaissance of magic, prominent figures from all over Europe followed his lead, including Giovanni Pico della Mirandola (1463–1494), Johann Reuchlin (1455–1522), Pietro Pomponazzi (1462–1525), Paracelsus (Theophrastus Bombastus von Hohenheim, ca. 1493–1541), Girolamo Cardano (1501–1576), John Dee (1527–1608), Giordano Bruno (1548–1600), Giambattista della Porta (1535–1615), Tommaso Campanella (1568–1639), Giambattista della Porta (1535–1615), Tommaso Campanella (1568–1639), Johannes Baptista van Helmont (1579–1644), Henry More (1614–1687), and others of equal stature. Eventually, however, as Europe’s most creative thinkers lost confidence in it, magic became even more disreputable than it had been before Ficino revived it. Around 1600, some reformers of natural knowledge had hoped that magic might yield a grand new system of learning, but within a century it became a synonym for the outdated remains of an obsolete worldview. Before examining its extraordinary rise and fall in post-medieval Europe, we can begin with magic as described by one of its most voluble advocates, Heinrich Cornelius Agrippa von Nettesheim (1486–1535), a German physician and philosopher.
The categories of “experience” and “experiment” lay at the heart of the conceptions of natural knowledge that dominated European learning at both the beginning and the end of the Scientific Revolution. The Latin words generally used to denote “experience” in both the medieval and early modern periods, experientia and experimentum, were generally interchangeable, with no systematic distinction between them except in particular contexts to be discussed; both are related to the word peritus, meaning skilled or experienced. Besides these terms and their vernacular cognates, another related Latin term, periculum (“trial” or “test”), began to be used in the late sixteenth century to designate the deliberate carrying out of an experiment (periculum facere), initially in the mathematical sciences. By the end of the seventeenth century, the construal of experience as “experiment” in this sense had acquired a wide and influential currency.
At the start of the sixteenth century, scholastic versions of Aristotelian natural philosophy dominated the approach to knowledge of nature that informed the official curricula of the universities (see the following chapters in this volume: Blair, Chapter 17; Garber, Chapter 2); Aristotle’s writings stress repeatedly the importance of sense experience in the creation of reliable knowledge of the world. Nonetheless, during the seventeenth century, many of the proponents of what came to be called by some (rather obscurely) “the new science” criticized the earlier orthodoxy of what Aristotelian natural philosophy (or “physics”) had become on the grounds that it paid insufficient attention to the lessons of experience. For example, Francis Bacon (1561–1626) wrote in his New Organon of 1620 that Aristotle “did not properly consult experience… after making his decisions arbitrarily, he parades experience around, distorted to suit his opinions, a captive.”
At the end of the sixteenth century, the English lawyer and natural philosopher Francis Bacon (1561–1626) began to fantasize about the locations for knowledge. The Gesta Grayorum (1594), a court revel performed before Queen Elizabeth I and attributed to Bacon, described an imaginary research facility containing “a most perfect and general library” and “a spacious, wonderful garden” filled with wild and cultivated plants and surrounded by a menagerie, aviary, freshwater lake, and saltwater lake. Spaces for living nature were complemented by a museum of science, art, and technology – “a goodly huge cabinet” housing artifacts (“whatsoever the hand of man by exquisite art or engine has made rare in stuff”), natural oddities (“whatsoever singularity, chance, and the shuffle of things hath produced”), and gems, minerals, and fossils (“whatsoever Nature has wrought in things that want life and may be kept”). The fourth and final component was a space in which to test nature, “a still-house, so furnished with mills, instruments, furnaces, and vessels as may be a palace fit for a philosopher’s stone.” The totality of these facilities, Bacon concluded, would be “a model of the universal nature made private.” This statement suggested a new idea of empiricism that privileged human invention and demonstration over pure observation and celebrated the communal aspects of observing nature over the heroic efforts of the lone observer. Nature had to be reconstructed within a microcosm, creating an artificial world of knowledge in which scholars prodded, dissected, and experimented with nature in order to know it better.
In the late Middle Ages, astronomy, unlike most other natural sciences now recognized, had been studied and practiced for over two millennia. Together with the other ancient sciences of harmonics, optics, and mechanics, it was considered to be a mixed mathematical science, differing from the pure mathematical sciences – arithmatic and geometry – in that astronomy considered number and magnitude in bodies and not in themselves. In the application of this division (which was not always strictly followed), astronomy could only develop and apply mathematical hypotheses: Pronouncements about the true nature of the heavens lay within the province of natural philosophy. Thus astronomers were not recognized as having the authority to decide whether the earth is moving or at rest, or whether comets are celestial or atmospheric. Astronomy’s function was only to describe the apparent positions of the heavenly bodies for the purposes of timekeeping, calendar making, and prediction of celestial influences. (This last task was the function of astrology, which was a respected science in the late Middle Ages, dealing with the effects of the celestial motions, just as natural philosophy treated its causes.)
This division of the science was established on philosophical grounds, and was used by philosophers and physical theorists to keep astronomy and the other mathematical sciences in their place. Astronomers, on the other hand, were never entirely content with their marginalization, and, while they improved the predictive power of their science, they strove to show the natural philosophers that the claims of astronomy could not be ignored.
Long before natural objects became subjects for experimental study in the laboratory, they had been commodities traded in the marketplace. In the early modern period, as European merchant vessels ventured far beyond the Mediterranean, this marketplace expanded rapidly, thereby increasing the variety and geographical diversity of the commodities traded therein. These changes were vividly reflected in the stockpiling of goods in warehouses for wholesale trade and in the accumulation of exotic natural and artificial objects in museums and cabinets of curiosities. From the gigantic warehouses of Amsterdam and the Hague to the bustling ports of Marseille and Venice, early modern collectors busily gathered specimens of exotic flora and fauna, shells, coral, and other objects from distant parts of the world.
The dramatic increase in the pace of trade, population growth, and the rise of credit all led to an expansion of the distribution network: in particular, to a rise in the number and variety of shops. In 1606, Lope de Vega wrote of Madrid, “Todo se ha vuelto tiendas” (“Everything has turned into shops”), while Daniel Defoe lamented that shops in seventeenth-century London had spread “monstrously.” The boom in shopkeeping not only increased the diversity of items available to consumers but also created spaces for conversation and for gaining information about natural and manufactured goods. In the early modern period, craftsmen’s shops were also workshops and were thus important sources of natural and technological information.
Echoing humanist educational ideals, the young Gargantua of Rabelais’s La vie très horrifique du grand Gargantua, père de Pantagruel (The Most Horrific Life of the Great Gargantua, Father of Pantagruel, 1534) visited jewelers, goldsmiths, alchemists, weavers, dyers, instrument makers, and other craftsmen to learn about the properties of things.
In the midst of his great Historia animalium (History of Animals, 1551–8), the Swiss-German naturalist Conrad Gessner (1516–1565) offered the following reflection on the process of creating knowledge. “Reason and experience are the two pillars of scientific work,” he affirmed. “Reason comes to us from God; experience depends on the will of man. Science is born from the collaboration of the two.” Gessner’s experience gathering materials for a new history of nature in the mid-sixteenth century gave him direct insight into the problems of combining reason and experience. The more material he uncovered, the more difficult it was to organize the natural world into distinctly logical patterns. By placing great emphasis on experience, Gessner had amassed enough material to write four hefty volumes that far surpassed what anyone had known before about animals. But he confessed that experience alone was an undisciplined kind of knowledge. It was reason that allowed him to give some semblance of order to nature and to interpret the similarities and differences he saw among the natural things of the world.
Gessner’s methodological lessons in the midst of his Renaissance zoology remind us that the natural sciences were an important arena in which new definitions of knowledge arose from an increased emphasis on experience. In the early modern period, natural history was an important, controversial, and much discussed kind of knowledge. Natural history was a truly encyclopedic science in which broad sectors of society participated, although not, at this point, as a unified group. Learned scholars delighted in the questions of terminology that allowed them to use their formidable linguistic erudition, developing a more precise vocabulary for the natural world that conformed to their experience of it.