To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we show that the Hofer-Zehnder symplectic capacity of a two-dimensional manifold is same as the area of the manifold. Using this fact, we also get a result on the symplectic capacity of the cotangent bundle of the torus with its canonical symplectic form.
In this paper we state that the bounded solutions of general first order linear elliptic systems of two equations in bounded multiply-connected plane domains, degenerated at the boundary, are determined in domains without any boundary conditions, provided the boundary is not characteristic for this system. The explicit formula for calculating the index of the system is derived.
Serre [6] has recently created a theory of some generality in response to a query from Manin about the size of the number N(x) of (indefinite) ternary quadratic forms AX2 + BY2 + CZ2 that represent zero and have coefficients of magnitudes not exceeding x.
Uniqueness of the solution to the following inverse problem is established. Given the heat equation, the initial temperature, the boundary regime at the left end of a finite rod and the measurements of the temperature at an intermediate point of the rod, find the temperature at the right end of the rod.
This is the first of two papers in which we study the singularities of solutions of second-order linear elliptic boundary value problems at the edges of piecewise analytic domains in ℝ3. When the opening angle at the edge is variable, there appears the phenomenon of “crossing” of the exponents of singularities. For this case, we introduce the appropriate combinations of the simple tensor product singularities that allow us to give estimates in ordinary and weighted Sobolev spaces for the regular part of the solution and for the coefficients of the singularities. These combinations appear in a natural way as sections of an analytic bundle above the edge. Their behaviour is described with the help of divided differences of powers of the distance to the edge. The class of operators considered includes second-order elliptic operators with analytic complex-valued coefficients with mixed Dirichlet, Neumann or oblique derivative conditions. With our description of the singularities we are able to remove some restrictive hypotheses that were previously made in other works. In this first part, we prove the basic facts in a simplified framework. Nevertheless the tools we use are essentially the same in the general situation.
We are interested in two parameter eigenvalue problems of the form
subject to Dirichlet boundary conditions
The weight function 5 and the potential q will both be assumed to lie in L2[0,1]. The problem (1.1), (1.2) generates eigencurves
in the sense that for any fixed λ, ν(λ) is the nth eigenvalue ν, (according to oscillation indexing) of (1.1), (1.2). These curves are in fact analytic functions of λ and have been the object of considerable study in recent years. The survey paper [1] provides background in this area and itemises properties of eigencurves.
In this work we discuss the Cauchy problem for a class of nonlinear dissipative equations as well as the existence of a global attractor and we estimate its dimension in the sense of the Hausdorff (or fractal) dimension.
This paper is a sequel to [4]. Its purpose is to show that the concept of isometric foldings of Riemannian manifolds can be extended to a much wider class of manifolds without losing the main structure theorem. We present here what we believe to be a definitive form of the folding concept for smooth manifolds.
The theory discussed here is based on the idea of a 1-spread [2], where the role of geodesies on a Riemannian manifold is assumed by smooth, unoriented and unparametrised curves on a smooth manifold. The absence of metrical structure forces a fresh approach to the basic definitions. A crucial feature of the Riemannian theory does survive, however, in this general setting: a 1-spread on a sufficiently smooth manifold M induces a 1-spread on sufficiently small spheres surrounding any point of M. With the help of this fact, we are able to construct an inductive definition of “star folding” f:M → N between smooth manifolds M and N, and to retain the theorem that the manifold M is stratified by the “folds”, each of which has the character of a “totally geodesic” submanifold with respect to the above-mentioned curves.
For a Hasse domain R in a global field F, the distribution of genera of R-lattices with specified invariants among the nonisometric quadratic spaces over F which contain them is studied. It is shown that such genera are equally distributed for spaces of dimension 2, but that this is not generally the case for spaces of dimension exceeding 2. Theresult in the binary case yields an extension of a dimension exceeding 2. The result in the binary case yields an extension of a theorem of Gauss.
This paper, although self-contained, is a continuation of the work done in [8], where the motion of a viscous, incompressible fluid is considered in conjunction with the rotation of a rigid body which is immersed in the fluid. The resulting mathematical model is a Navier-Stokes problem with dynamic boundary conditions. In [8] a unique L2,3 solution is constructed under certain regularity assumptions on the initial states. In this paper we consider the Navier-Stokes problem with dynamic boundary conditions in the Lebesgue spaces Lr,3 (3<r<∞) and prove the existence of a unique solution, local in time, without imposing any regularity conditions on the initial states.
This is the second of two papers in which we study the singularities of solutions of second-order linear elliptic boundary value problems at the edges of piecewise analytic domains in ℝ3. When the opening angle at the edge is variable, there appears trie phenomenon of “crossing” of the exponents of singularities. In Part I, we introduced for the Dirichlet problem appropriate combinations of the simple tensor product singularities.
In this second part, we extend the results of Part I to general non-homogeneous boundary conditions. Moreover, we show how these combinations of singularities appear in a natural way as sections of an analytic vector bundle above the edge. In the case when the interior operator is the Laplacian, we give a simpler expression of the combined singular functions, involving divided differences of powers of a complex variable describing the coordinates in the normal plane to the edge.
We give a complete solution to the G-closure problem for mixtures of two well-ordered possibly anisotropic conductors. Both the G-closure with fixed volume fractions and the full G-closure are computed. The conductivity tensors are considered in a fixed frame and no rotations are allowed.
Let be the one-sided maximal operator and let Ф be a convex non-decreasing function on (0, ∞), Ф(0) = 0. We present necessary and sufficient conditions on a couple of weight functions (σ, ϱ) such that the integral inqualities of weak type
and of extra-weak type
hold. Our proofs do not refer to the theory of Orlicz spaces.
Let In be the symmetric inverse semigroup on Xn = {1,…, n}, let Sln be the subsemigroup of strictly partial one-to-one self-maps of Xn and let = { α ∊ SIn: x} ≦ x = U = ∅= be the semigroup of all partial one-to-one decreasing maps including the empty or zero map of Xn. In this paper it is shown that is an (irregular, for n ≧ 2) type A semigroup with n D*-classes and D* = I*. Further, it is shown that is generated by the n(n + l)/2 quasi-idempotents in
After a study made for bounded domains and in the periodic case, we investigate the variational formulation of Schrödinger-Poisson systems set on the whole space ℝd, d ≦ 3. This variational formulation leads to a uniqueness result, while the existence of a solution is proved only for ‘small data’ because of the lack of coerciveness. The end of this paper briefly presents the extension of this formalism to a physically relevant problem where the potential is periodic in one direction.
Time-harmonic electromagnetic waves are scattered by a homogeneous dielectric obstacle. The corresponding electromagnetic transmission problem is reduced to a single integral equation over S for a single unknown tangential vector field, where S is the interface between the obstacle and the surrounding medium. In fact, several different integral equations are derived and analysed, including two previously-known equations due to E. Marx and J. R. Mautz, and two new singular integral equations. Mautz's equation is shown to be uniquely solvable at all frequencies. A new uniquely solvable singular integral equation is also found. The paper also includes a review of methods using pairs of coupled integral equations over S. It is these methods that are usually used in practice, although single integral equations seem to offer some computational advantages.
Hyperasymptotic expansions were recently introduced by Berry and Howls, and yield refined information by expanding remainders in asymptotic expansions. In a recent paper of Olde Daalhuis, a method was given for obtaining hyperasymptotic expansions of integrals that represent the confluent hypergeometric U-function. This paper gives an extension of that method to neighbourhoods of the so-called Stokes lines. At each level, the remainder is exponentially small compared with the previous remainders. Two numerical illustrations confirm these exponential improvements.