To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we obtain the $H^{p_1}\times H^{p_2}\times H^{p_3}\to H^p$ boundedness for trilinear Fourier multiplier operators, which is a trilinear analogue of the multiplier theorem of Calderón and Torchinsky [4]. Our result improves the trilinear estimate in [22] by additionally assuming an appropriate vanishing moment condition, which is natural in the boundedness into the Hardy space $H^p$ for $0<p\le 1$.
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $. We consider a class of non-square-integrable observables $\phi $, mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$, where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$. The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.
Let $K\subset {\mathbb {R}}^d$ be a self-similar set generated by an iterated function system $\{\varphi _i\}_{i=1}^m$ satisfying the strong separation condition and let f be a contracting similitude with $f(K)\subseteq K$. We show that $f(K)$ is relatively open in K if all $\varphi _i$ share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys.30 (2010), 399–440]. As a byproduct of our argument, when $d=1$ and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math.222 (2009), 1964–1981].
We study the turnpike phenomenon for optimal control problems with mean-field dynamics that are obtained as the limit $N\rightarrow \infty$ of systems governed by a large number $N$ of ordinary differential equations. We show that the optimal control problems with large time horizons give rise to a turnpike structure of the optimal state and the optimal control. For the proof, we use the fact that the turnpike structure for the problems on the level of ordinary differential equations is preserved under the corresponding mean-field limit.
In this work, we study the Sobolev stability of shear flows near Couette in the 2D incompressible magnetohydrodynamics (MHD) equations with background magnetic field $(\alpha,0 )^\top$ on $\mathbb {T}\times \mathbb {R}$. More precisely, for sufficiently large $\alpha$, we show that when the initial datum of the shear flow satisfies $\left \| U(y)-y\right \|_{H^{N+6}}\ll 1$, with $N>1$, and the initial perturbations ${u}_{\mathrm {in}}$ and ${b}_{\mathrm {in}}$ satisfy $\left \| ( {u}_{\mathrm {in}},{b}_{\mathrm {in}}) \right \| _{H^{N+1}}=\epsilon \ll \nu ^{\frac 56+\tilde \delta }$ for any fixed $\tilde \delta >0$, then the solution of the 2D MHD equations remains $\nu ^{-(\frac {1}{3}+\frac {\tilde \delta }{2})}\epsilon$-close to $( e^{\nu t \partial _{yy}}U(y),0)^\top$ for all $t>0$.
Let $f: M\rightarrow M$ be a $C^{1+\alpha }$ diffeomorphism on an $m_0$-dimensional compact smooth Riemannian manifold M and $\mu $ a hyperbolic ergodic f-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of $\mu $, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If $\mu $ is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of $\mu $ can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets $\{\Lambda _n\}_{n\geq 1}$. The limit behaviour of the Carathéodory singular dimension of $\Lambda _n$ on the unstable manifold with respect to the super-additive singular valued potential is also studied.
We study minimizers of the Allen–Cahn system. We consider the $\varepsilon$-energy functional with Dirichlet values and we establish the $\Gamma$-limit. The minimizers of the limiting functional are closely related to minimizing partitions of the domain. Finally, utilizing that the triod and the straight line are the only minimal cones in the plane together with regularity results for minimal curves, we determine the precise structure of the minimizers of the limiting functional, and thus the limit of minimizers of the $\varepsilon$-energy functional as $\varepsilon \rightarrow 0$.