To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Designing a reasonable M/G/1 retrial queue system that enhances service efficiency and reduces energy consumption is a challenging issue in Information and Communication Technology systems. This paper presents an M/G/1 retrial queue system incorporating random working vacation (RWV) and improved service efficiency during vacation (ISEV) policies, and examines its optimal queuing strategies. The RWV policy suggests that the server takes random working vacations during reserved idle periods, effectively reducing energy consumption. In contrast, the ISEV policy strives to augment service efficiency during regular working periods by updating, inspecting or maintaining the server on vacations. The system is transformed into a Cauchy problem to investigate its well-posedness and stability, employing operator semigroup theory. Based on the system’s stability, steady-state performance measures, such as service efficiency, energy consumption and expected costs, are quantified using the steady-state solution. The paper subsequently demonstrates the existence of optimal queuing strategies that achieve maximum efficiency and minimum expected costs. Finally, two numerical experiments are provided to illustrate the effectiveness of the system.
We prove a nonarchimedean analogue of Jørgensen’s inequality, and use it to deduce several algebraic convergence results. As an application, we show that every dense subgroup of ${\mathrm {SL}_2}(K)$, where K is a p-adic field, contains two elements that generate a dense subgroup of ${\mathrm {SL}_2}(K)$, which is a special case of a result by Breuillard and Gelander [‘On dense free subgroups of Lie groups’, J. Algebra261(2) (2003), 448–467]. We also list several other related results, which are well known to experts, but not easy to locate in the literature; for example, we show that a nonelementary subgroup of ${\mathrm {SL}_2}(K)$ over a nonarchimedean local field K is discrete if and only if each of its two-generator subgroups is discrete.
We develop two methods for expressing the global index of the gradient of a 2 variable polynomial function $f$: in terms of the atypical fibres of $f$, and in terms of the clusters of Milnor arcs at infinity. These allow us to derive upper bounds for the global index, in particular refining the one that was found by Durfee in terms of the degree of $f$.
We consider the Kakinuma model for the motion of interfacial gravity waves. The Kakinuma model is a system of Euler–Lagrange equations for an approximate Lagrangian, which is obtained by approximating the velocity potentials in the Lagrangian of the full model. Structures of the Kakinuma model and the well-posedness of its initial value problem were analysed in the companion paper [14]. In this present paper, we show that the Kakinuma model is a higher order shallow water approximation to the full model for interfacial gravity waves with an error of order $O(\delta _1^{4N+2}+\delta _2^{4N+2})$ in the sense of consistency, where $\delta _1$ and $\delta _2$ are shallowness parameters, which are the ratios of the mean depths of the upper and the lower layers to the typical horizontal wavelength, respectively, and $N$ is, roughly speaking, the size of the Kakinuma model and can be taken an arbitrarily large number. Moreover, under a hypothesis of the existence of the solution to the full model with a uniform bound, a rigorous justification of the Kakinuma model is proved by giving an error estimate between the solution to the Kakinuma model and that of the full model. An error estimate between the Hamiltonian of the Kakinuma model and that of the full model is also provided.
Let $C\; : \;y^2=f(x)$ be a hyperelliptic curve of genus $g\geq 1$, defined over a complete discretely valued field $K$, with ring of integers $O_K$. Under certain conditions on $C$, mild when residue characteristic is not $2$, we explicitly construct the minimal regular model with normal crossings $\mathcal{C}/O_K$ of $C$. In the same setting we determine a basis of integral differentials of $C$, that is an $O_K$-basis for the global sections of the relative dualising sheaf $\omega _{\mathcal{C}/O_K}$.
The first part of this work is devoted to the study of higher derivatives of pressure functions of Hölder potentials on shift spaces with finitely many symbols. By describing the derivatives of pressure functions via the central limit theorem for the associated random processes, we discover some rigid relationships between derivatives of various orders. The rigidity imposes obstructions on fitting candidate convex analytic functions by pressure functions of Hölder potentials globally, which answers a question of Kucherenko and Quas. In the second part of the work, we consider fitting candidate analytic germs by pressure functions of locally constant potentials. We prove that all 1-level candidate germs can be realised by pressures of some locally constant potentials, as long as the number of symbols in the symbolic set is large enough. There are also some results on fitting 2-level germs by pressures of locally constant potentials obtained in the work.
We show that for every countable group, any sequence of approximate homomorphisms with values in permutations can be realized as the restriction of a sofic approximation of an orbit equivalence relation. Moreover, this orbit equivalence relation is uniquely determined by the invariant random subgroup of the approximate homomorphisms. We record applications of this result to recover various known stability and conjugacy characterizations for almost homomorphisms of amenable groups.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption
\[ \partial_t u=\Delta u^m-|x|^{\sigma}u^q, \]
posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$, with $m>1$, $q\in (0,\,1)$ and $\sigma =\sigma _c:=2(1-q)/ (m-1)$ is proved. Looking for radially symmetric solutions of the form
we show that there exists a unique exponent $\beta ^*\in (0,\,\infty )$ for which there exists a one-parameter family $(u_A)_{A>0}$ of solutions with compactly supported and non-increasing profiles $(f_A)_{A>0}$ satisfying $f_A(0)=A$ and $f_A'(0)=0$. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when $\sigma \in (0,\,\sigma _c)$.
For $s\in [\tfrac {1}{2},\, 1)$, let $u$ solve $(\partial _t - \Delta )^s u = Vu$ in $\mathbb {R}^{n} \times [-T,\, 0]$ for some $T>0$ where $||V||_{ C^2(\mathbb {R}^n \times [-T, 0])} < \infty$. We show that if for some $0<\mathfrak {K} < T$ and $\epsilon >0$
In this note, we present examples of non-quasi-geodesic metric spaces which are hyperbolic (i.e., satisfying Gromov’s $4$-point condition) while the intersection of any two metric balls therein does not either ‘look like’ a ball or has uniformly bounded eccentricity. This answers an open question posed by Chatterji and Niblo.
Based on previous work of the authors, to any S-adic development of a subshift X a ‘directive sequence’ of commutative diagrams is associated, which consists at every level $n \geq 0$ of the measure cone and the letter frequency cone of the level subshift $X_n$ associated canonically to the given S-adic development. The issuing rich picture enables one to deduce results about X with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer $d \geq 2$, an S-adic development of a minimal, aperiodic, uniquely ergodic subshift X, where all level alphabets $\mathcal A_n$ have cardinality $d,$ while none of the $d-2$ bottom level morphisms is recognizable in its level subshift $X_n \subseteq \mathcal A_n^{\mathbb {Z}}$.
where $b,\, \omega >0$ are constants, $p>2$. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.
The Dehn quandle of a closed orientable surface is the set of isotopy classes of nonseparating simple closed curves with a natural quandle structure arising from Dehn twists. In this paper, we consider the finiteness of some canonical quotients of these quandles. For a surface of positive genus, we give a precise description of the 2-quandle of its Dehn quandle. Further, with some exceptions for genus more than 2, we determine all values of n for which the n-quandle of its Dehn quandle is finite. The result can be thought of as the Dehn quandle analogue of a similar result of Hoste and Shanahan for link quandles [‘Links with finite n-quandles’, Algebr. Geom. Topol.17(5) (2017), 2807–2823]. We also compute the size of the smallest nontrivial quandle quotient of the Dehn quandle of a surface. Along the way, we prove that the involutory quotient of an Artin quandle is precisely the corresponding Coxeter quandle, and also determine the smallest nontrivial quotient of a braid quandle.
For $\mathscr {B} \subseteq \mathbb {N} $, the $ \mathscr {B} $-free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $, have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$-free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.
The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.