To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The complete classification of the finite simple groups that are $(2,3)$-generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$-generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$, $k\geq 4$. As a byproduct, we also obtain $(2,3)$-generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$.
We formulate haptotaxis models of cancer invasion wherein the infiltrating cancer cells can occupy a spectrum of states in phenotype space, ranging from ‘fully mesenchymal’ to ‘fully epithelial’. The more mesenchymal cells are those that display stronger haptotaxis responses and have greater capacity to modify the extracellular matrix (ECM) through enhanced secretion of matrix-degrading enzymes (MDEs). However, as a trade-off, they have lower proliferative capacity than the more epithelial cells. The framework is multiscale in that we start with an individual-based model that tracks the dynamics of single cells, which is based on a branching random walk over a lattice representing both physical and phenotype space. We formally derive the corresponding continuum model, which takes the form of a coupled system comprising a partial integro-differential equation for the local cell population density function, a partial differential equation for the MDE concentration and an infinite-dimensional ordinary differential equation for the ECM density. Despite the intricacy of the model, we show, through formal asymptotic techniques, that for certain parameter regimes it is possible to carry out a detailed travelling wave analysis and obtain invading fronts with spatial structuring of phenotypes. Precisely, the most mesenchymal cells dominate the leading edge of the invasion wave and the most epithelial (and most proliferative) dominate the rear, representing a bulk tumour population. As such, the model recapitulates similar observations into a front to back structuring of invasion waves into leader-type and follower-type cells, witnessed in an increasing number of experimental studies over recent years.
The paper is concerned with positive solutions to problems of the type
\[ -\Delta_{\mathbb{B}^{N}} u - \lambda u = a(x) |u|^{p-1}\;u + f \text{ in }\mathbb{B}^{N}, \quad u \in H^{1}{(\mathbb{B}^{N})}, \]
where $\mathbb {B}^N$ denotes the hyperbolic space, $1< p<2^*-1:=\frac {N+2}{N-2}$, $\;\lambda < \frac {(N-1)^2}{4}$, and $f \in H^{-1}(\mathbb {B}^{N})$ ($f \not \equiv 0$) is a non-negative functional. The potential $a\in L^\infty (\mathbb {B}^N)$ is assumed to be strictly positive, such that $\lim _{d(x, 0) \rightarrow \infty } a(x) \rightarrow 1,$ where $d(x,\, 0)$ denotes the geodesic distance. First, the existence of three positive solutions is proved under the assumption that $a(x) \leq 1$. Then the case $a(x) \geq 1$ is considered, and the existence of two positive solutions is proved. In both cases, it is assumed that $\mu ( \{ x : a(x) \neq 1\}) > 0.$ Subsequently, we establish the existence of two positive solutions for $a(x) \equiv 1$ and prove asymptotic estimates for positive solutions using barrier-type arguments. The proofs for existence combine variational arguments, key energy estimates involving hyperbolic bubbles.
In this paper, we consider random iterations of polynomial maps $z^{2} + c_{n}$, where $c_{n}$ are complex-valued independent random variables following the uniform distribution on the closed disk with center c and radius r. The aim of this paper is twofold. First, we study the (dis)connectedness of random Julia sets. Here, we reveal the relationships between the bifurcation radius and connectedness of random Julia sets. Second, we investigate the bifurcation of our random iterations and give quantitative estimates of bifurcation parameters. In particular, we prove that for the central parameter $c = -1$, almost every random Julia set is totally disconnected with much smaller radial parameters r than expected. We also introduce several open questions worth discussing.
We generalize the known collision results for a solid in a 3D compressible Newtonian fluid to compressible non-Newtonian ones, and to Newtonian fluids with temperature-depending viscosities.
In this paper, we consider the following non-linear system involving the fractional Laplacian0.1
\begin{equation} \left\{\begin{array}{@{}ll} (-\Delta)^{s} u (x)= f(u,\,v), \\ (-\Delta)^{s} v (x)= g(u,\,v), \end{array} \right. \end{equation}
in two different types of domains, one is bounded, and the other is an infinite cylinder, where $0< s<1$. We employ the direct sliding method for fractional Laplacian, different from the conventional extension and moving planes methods, to derive the monotonicity of solutions for (0.1) in $x_n$ variable. Meanwhile, we develop a new iteration method for systems in the proofs. Hopefully, the iteration method can also be applied to solve other problems.
In this note, we prove a formula for the cancellation exponent $k_{v,n}$ between division polynomials $\psi _n$ and $\phi _n$ associated with a sequence $\{nP\}_{n\in \mathbb {N}}$ of points on an elliptic curve $E$ defined over a discrete valuation field $K$. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.
In this paper, we review some recent results on nonlocal interaction problems. The focus is on interaction kernels that are anisotropic variants of the classical Coulomb kernel. In other words, while preserving the same singularity at zero of the Coulomb kernel, they present preferred directions of interaction. For kernels of this kind and general confinement we will prove existence and uniqueness of minimizers of the corresponding energy. In the case of a quadratic confinement we will review a recent result by Carrillo and Shu about the explicit characterization of minimizers, and present a new proof, which has the advantage of being extendable to higher dimensions. In light of this result, we will re-examine some previous works motivated by applications to dislocation theory in materials science. Finally, we will discuss some related results and open questions.
In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of free extension shifts on a group G, which takes a shift on a subgroup H of G, and naturally extends it to a shift on all of G.
Tissues form from collections of cells that interact together mechanically via cell-to-cell adhesion, mediated by transmembrane cell adhesion molecules. Under a sufficiently large amount of induced stress, these tissues can undergo elastic deformation in the direction of tension, where they then elongate without any topological changes, and experience plastic deformation within the tissue. In this work, we present a novel mathematical model describing the deformation of cells, where tissues are elongated in a controlled manner. In doing so, the cells are able to undergo remodelling through elastic and then plastic deformation, in accordance with experimental observation. Our model describes bistable sizes of a cell that actively deform under stress to elongate the cell. In the absence of remodelling, the model reduces to the standard linear interaction model. In the presence of instant remodelling, we provide a bifurcation analysis to describe the existence of the bistable cell sizes. In the case of general remodelling, we show numerically that cells within a tissue may populate both the initial and elongated cell sizes, following a sufficiently large degree of stress.
We present a modified version of the well-known geometric Lorenz attractor. It consists of a $C^1$ open set ${\mathcal O}$ of vector fields in ${\mathbb R}^3$ having an attracting region ${\mathcal U}$ satisfying three properties. Namely, a unique singularity $\sigma $; a unique attractor $\Lambda $ including the singular point and the maximal invariant in ${\mathcal U}$ has at most two chain recurrence classes, which are $\Lambda $ and (at most) one hyperbolic horseshoe. The horseshoe and the singular attractor have a collision along with the union of $2$ codimension $1$ submanifolds which split ${\mathcal O}$ into three regions. By crossing this collision locus, the attractor and the horseshoe may merge into a two-sided Lorenz attractor, or they may exchange their nature: the Lorenz attractor expels the singular point $\sigma $ and becomes a horseshoe, and the horseshoe absorbs $\sigma $ becoming a Lorenz attractor.
Opinion dynamics is an important and very active area of research that delves into the complex processes through which individuals form and modify their opinions within a social context. The ability to comprehend and unravel the mechanisms that drive opinion formation is of great significance for predicting a wide range of social phenomena such as political polarisation, the diffusion of misinformation, the formation of public consensus and the emergence of collective behaviours. In this paper, we aim to contribute to that field by introducing a novel mathematical model that specifically accounts for the influence of social media networks on opinion dynamics. With the rise of platforms such as Twitter, Facebook, and Instagram and many others, social networks have become significant arenas where opinions are shared, discussed and potentially altered. To this aim after an analytical construction of our new model and through incorporation of real-life data from Twitter, we calibrate the model parameters to accurately reflect the dynamics that unfold in social media, showing in particular the role played by the so-called influencers in driving individual opinions towards predetermined directions.
We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.
Let $ G $ be a connected semisimple real algebraic group and $\Gamma <G$ be a Zariski dense discrete subgroup. Let N denote a maximal horospherical subgroup of G, and $P=MAN$ the minimal parabolic subgroup which is the normalizer of N. Let $\mathcal E$ denote the unique P-minimal subset of $\Gamma \backslash G$ and let $\mathcal E_0$ be a $P^\circ $-minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary $ G/P $ and show that the following are equivalent for any $[g]\in \mathcal E_0$:
(1)$gP\in G/P$ is a horospherical limit point;
(2)$[g]NM$ is dense in $\mathcal E$;
(3)$[g]N$ is dense in $\mathcal E_0$.
The equivalence of items (1) and (2) is due to Dal’bo in the rank one case. We also show that unlike convex cocompact groups of rank one Lie groups, the $NM$-minimality of $\mathcal E$ does not hold in a general Anosov homogeneous space.
We initiate a systematic study of the perfection of affine group schemes of finite type over fields of positive characteristic. The main result intrinsically characterises and classifies the perfections of reductive groups and obtains a bijection with the set of classifying spaces of compact connected Lie groups topologically localised away from the characteristic. We also study the representations of perfectly reductive groups. We establish a highest weight classification of simple modules, the decomposition into blocks, and relate extension groups to those of the underlying abstract group.
In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite $p$-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian $p$-groups with generalized corank at most three.
We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational ${\mathbb R}$-tree T. We also show that T admits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
This paper consists of two parts. The first is to study the existence of a point a at the intersection of the Julia set and the escaping set such that a goes to infinity under iterates along Julia directions or Borel directions. Additionally, we find such points that approximate all Borel directions to escape if the meromorphic functions have positive lower order. We confirm the existence of such slowly escaping points under a weaker growth condition. The second is to study the connection between the Fatou set and argument distribution. In view of the filling disks, we show nonexistence of multiply connected Fatou components if an entire function satisfies a weaker growth condition. We prove that the absence of singular directions implies the nonexistence of large annuli in the Fatou set.
Let G be a group and let V be an algebraic variety over an algebraically closed field K. Let A denote the set of K-points of V. We introduce algebraic sofic subshifts ${\Sigma \subset A^G}$ and study endomorphisms $\tau \colon \Sigma \to \Sigma $. We generalize several results for dynamical invariant sets and nilpotency of $\tau $ that are well known for finite alphabet cellular automata. Under mild assumptions, we prove that $\tau $ is nilpotent if and only if its limit set, that is, the intersection of the images of its iterates, is a singleton. If moreover G is infinite, finitely generated and $\Sigma $ is topologically mixing, we show that $\tau $ is nilpotent if and only if its limit set consists of periodic configurations and has a finite set of alphabet values.
We introduce the notions of returns and well-aligned sets for closed relations on compact metric spaces and then use them to obtain non-trivial sufficient conditions for such a relation to have non-zero entropy. In addition, we give a characterization of finite relations with non-zero entropy in terms of Li–Yorke and DC2 chaos.