To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The synchronization hierarchy of finite permutation groups consists of classes of groups lying between $2$-transitive groups and primitive groups. This includes the class of spreading groups, which are defined in terms of sets and multisets of permuted points, and which are known to be primitive of almost simple, affine or diagonal type. In this paper, we prove that in fact no spreading group of diagonal type exists. As part of our proof, we show that all non-abelian finite simple groups, other than six sporadic groups, have a transitive action in which a proper normal subgroup of a point stabilizer is supplemented by all corresponding two-point stabilizers.
We prove the convergence of moments of the number of directions of affine lattice vectors that fall into a small disc, under natural Diophantine conditions on the shift. Furthermore, we show that the pair correlation function is Poissonian for any irrational shift in dimension 3 and higher, including well-approximable vectors. Convergence in distribution was already proved in the work of Strömbergsson and the second author [The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Ann. of Math. (2)172 (2010), 1949–2033], and the principal step in the extension to convergence of moments is an escape of mass estimate for averages over embedded $\operatorname {SL}(d,\mathbb {R})$-horospheres in the space of affine lattices.
In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform $f \in S_2(\Gamma _0(N))$ (and closely linked to deformations of the Galois representation $\rho _f$ associated to f), whilst the other measure is related to the congruence module associated to f (and is closely linked to Hecke rings and congruences between f and other newforms in $S_2(\Gamma _0(N))$). The equality of these two measures led to isomorphisms $R={\mathbf T}$ between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections.
We continue our study begun in [BKM21] of the Wiles defect of deformation rings and Hecke rings (at a newform f) acting on the cohomology of Shimura curves over ${\mathbf Q}$: It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation $\lambda _f:{\mathbf T} \to {\mathcal O}$. In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism $ R={\mathbf T}$ without the rings being complete intersections. Using novel arguments in commutative algebra and patching, we generalize significantly and give different proofs of the results in [BKM21] that compute the Wiles defect at $\lambda _f: R={\mathbf T} \to {\mathcal O}$, and explain in an a priori manner why the answer in [BKM21] is a sum of local defects. As a curious application of our work we give a new and more robust approach to the result of Ribet–Takahashi that computes change of degrees of optimal parametrizations of elliptic curves over ${\mathbf Q}$ by Shimura curves as we vary the Shimura curve. The results we prove are not attainable using only the methods of Ribet–Takahashi.
Choosing ${\kappa }$ (horizontal ordinate of the saddle point associated to the homoclinic orbit) as bifurcation parameter, bifurcations of the travelling wave solutions is studied in a perturbed $(1 + 1)$-dimensional dispersive long wave equation. The solitary wave solution exists at a suitable wave speed $c$ for the bifurcation parameter ${\kappa }\in \left (0,1-\frac {\sqrt 3}{3}\right )\cup \left (1+\frac {\sqrt 3}{3},2\right )$, while the kink and anti-kink wave solutions exist at a unique wave speed $c^*=\sqrt {15}/3$ for $\kappa =0$ or $\kappa =2$. The methods are based on the geometric singular perturbation (GSP, for short) approach, Melnikov method and invariant manifolds theory. Interestingly, not only the explicit analytical expression of the complicated homoclinic Melnikov integral is directly obtained for the perturbed long wave equation, but also the explicit analytical expression of the limit wave speed is directly given. Numerical simulations are utilized to verify our mathematical results.
In this paper, we derive the effective model describing a thin-domain flow with permeable boundary through which the fluid is injected into the domain. We start with incompressible Stokes system and perform the rigorous asymptotic analysis. Choosing the appropriate scaling for the injection leads to a compressible effective model. In this paper, we derive the effective model describing a thin-domain flow with permeable boundary through which the fluid is injected into the domain. We start with incompressible Stokes system and perform the rigorous asymptotic analysis. Choosing the appropriate scaling for the injection leads to a compressible effective model.
We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if $\Gamma $ is a countable discrete abelian group, $\varphi , \psi \in \mathrm {End}(\Gamma )$, and $\psi - \varphi $ is an injective endomorphism with finite index image, then for any ergodic measure-preserving $\Gamma $-system $( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$, any measurable set $A \in {\mathcal {X}}$, and any ${\varepsilon }> 0$, there is a syndetic set of $g \in \Gamma$ such that $\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$. This generalizes the main results of Ackelsberg et al [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107]. For the group $\Gamma = {\mathbb {Z}}^d$, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to the quasi-affine (or Conze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to $\varphi $ and $\psi $) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.
We study the poor-biased model for money exchange introduced in Cao & Motsch ((2023) Kinet. Relat. Models 16(5), 764–794.): agents are being randomly picked at a rate proportional to their current wealth, and then the selected agent gives a dollar to another agent picked uniformly at random. Simulations of a stochastic system of finitely many agents as well as a rigorous analysis carried out in Cao & Motsch ((2023) Kinet. Relat. Models 16(5), 764–794.), Lanchier ((2017) J. Stat. Phys. 167(1), 160–172.) suggest that, when both the number of agents and time become large enough, the distribution of money among the agents converges to a Poisson distribution. In this manuscript, we establish a uniform-in-time propagation of chaos result as the number of agents goes to infinity, which justifies the validity of the mean-field deterministic infinite system of ordinary differential equations as an approximation of the underlying stochastic agent-based dynamics.
Singularly perturbed ordinary differential equations often exhibit Stokes’ phenomenon, which describes the appearance and disappearance of oscillating exponentially small terms across curves in the complex plane known as Stokes lines. These curves originate at singular points in the leading-order solution to the differential equation. In many important problems, it is impossible to obtain a closed-form expression for these leading-order solutions, and it is therefore challenging to locate these singular points. We present evidence that the analytic leading-order solution of a linear differential equation can be replaced with a numerical rational approximation using the adaptive Antoulas–Anderson (AAA) method. Despite such an approximation having completely different singularity types and locations, we show that the subsequent exponential asymptotic analysis accurately predicts the exponentially small behaviour present in the solution. For sufficiently small values of the asymptotic parameter, this approach breaks down; however, the range of validity may be extended by increasing the number of poles in the rational approximation. We present a related nonlinear problem and discuss the challenges that arise due to nonlinear effects. Overall, our approach allows for the study of exponentially small asymptotic effects without requiring an exact analytic form for the leading-order solution; this permits exponential asymptotic methods to be used in a much wider range of applications.
We show that for $n \neq 1,4$, the simplicial volume of an inward tame triangulable open $n$-manifold $M$ with amenable fundamental group at infinity at each end is finite; moreover, we show that if also $\pi _1(M)$ is amenable, then the simplicial volume of $M$ vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.
We consider planar flow involving two viscous fluids in a porous medium. One fluid is injected through a line source at the origin and moves radially outwards, pushing the second, ambient fluid outwards. There is an interface between the two fluids and if the inner injected fluid is of lower viscosity, the interface is unstable to small disturbances and radially directed unstable Saffman–Taylor fingers are produced. A linearized theory is presented and is compared with nonlinear results obtained using a numerical spectral method. An additional theory is also discussed, in which the sharp interface is replaced with a narrow diffuse interfacial region. We show that the nonlinear results are in close agreement with the linearized theory for small-amplitude disturbances at early times, but that large-amplitude fingers develop at later times and can even detach completely from the initial injection region.
We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$. This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
Schmidt games and the Cantor winning property give alternative notions of largeness, similar to the more standard notions of measure and category. Being intuitive, flexible, and applicable to recent research made them an active object of study. We survey the definitions of the most common variants and connections between them. A new game called the Cantor game is invented and helps with presenting a unifying framework. We prove surprising new results such as the coincidence of absolute winning and $1$ Cantor winning in metric spaces, and the fact that $1/2$ winning implies absolute winning for subsets of $\mathbb {R}$. We also suggest a prototypical example of a Cantor winning set to show the ubiquity of such sets in metric number theory and ergodic theory.
Mathematical modelling of microwaves travelling through bauxite ore provides a way to compute moisture content in the free space transmission method given data on signal attenuation, phase shift and variable bauxite depth. We extend a recently developed four-layer model that uses coupled ordinary differential wave equations for the electric field together with continuity boundary conditions at interfaces between ore, air and antenna to find a solution that incorporates multiple internal reflections in ore and air. The model provides good fits to data, depending on ore permittivity and conductivity.
Our extensions are to use effective medium models to obtain electromagnetic properties of the ore mixture from moisture content and to incorporate the damping effects of scattering from the ore surface. Our model leads to a formula for the received signal showing how signal strengths SS and phase shifts depend on the moisture content of the bauxite ore, through the effects of moisture on permittivity and conductivity. We show that SS may be noninvertible, indicating that attenuation data alone cannot be used to infer moisture content. Combining with phase data typically corrects the noninvertibility. Reducing the operating frequency dramatically improves the usefulness of signal strength data for inferring moisture content.
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$-distinguished Iwahori-spherical representations of ${\mathbb H} (E)$. For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$, we prove a numerical criterion of ${\mathbb H} (F)$-distinction. As an application, we classify the ${\mathbb H} (F)$-distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
In this paper we determine the homotopy types of the reduced suspension space of certain connected orientable closed smooth $five$-manifolds. As applications, we compute the reduced $K$-groups of $M$ and show that the suspension map between the third cohomotopy set $\pi ^3(M)$ and the fourth cohomotopy set $\pi ^4(\Sigma M)$ is a bijection.
The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an $s$-generated weakly branch, but not branch, group that acts on the $m$-adic tree, for $s,m\ge 2$. A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.
We study the joint distribution of values of a pair consisting of a quadratic form ${\mathbf q}$ and a linear form ${\mathbf l}$ over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of $\mathrm{SL}_3(\mathbb{R})$. Math. Ann.286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if $n \ge 5$, then under the assumptions that for every $(\alpha , \beta ) \in {\mathbb {R}}^2 \setminus \{ (0,0) \}$, the form $\alpha {\mathbf q} + \beta {\mathbf l}^2$ is irrational and that the signature of the restriction of ${\mathbf q}$ to the kernel of ${\mathbf l}$ is $(p, n-1-p)$, where ${3\le p\le n-2}$, the number of vectors $v \in {\mathbb {Z}}^n$ for which $\|v\| < T$, $a < {\mathbf q}(v) < b$ and $c< {\mathbf l}(v) < d$ is asymptotically $ C({\mathbf q}, {\mathbf l})(d-c)(b-a)T^{n-3}$ as $T \to \infty $, where $C({\mathbf q}, {\mathbf l})$ only depends on ${\mathbf q}$ and ${\mathbf l}$. The density of the set of joint values of $({\mathbf q}, {\mathbf l})$ under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. Trans. Amer. Math. Soc.356(11) (2004), 4447–4463].
Kobayashi–Ochiai proved that the set of dominant maps from a fixed variety to a fixed variety of general type is finite. We prove the natural extension of their finiteness theorem to Campana’s orbifold pairs.
Motivated by the impact of worsening climate conditions on vegetation patches, we study dynamic instabilities in an idealised Ginzburg–Landau model. Our main results predict time instances of sudden drops in wavenumber and the resulting target states. The changes in wavenumber correspond to the annihilation of individual vegetation patches when resources are scarce and cannot support the original number of patches. Drops happen well after the primary pattern has destabilised at the Eckhaus boundary and key to distinguishing between the disappearance of 1,2 or more patches during the drop are complex spatio-temporal resonances in the linearisation at the unstable pattern. We support our results with numerical simulations and expect our results to be conceptually applicable universally near the Eckhaus boundary, in particular in more realistic models.