To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider K-theoretic Gromov-Witten theory of root constructions. We calculate some genus $0$ K-theoretic Gromov-Witten invariants of a root gerbe. We also obtain a K-theoretic relative/orbifold correspondence in genus $0$.
We prove that a generic probability measure-preserving (p.m.p.) action of a countable amenable group G has scaling entropy that cannot be dominated by a given rate of growth. As a corollary, we obtain that there does not exist a topological action of G for which the set of ergodic invariant measures coincides with the set of all ergodic p.m.p. G-systems of entropy zero. We also prove that a generic action of a residually finite amenable group has scaling entropy that cannot be bounded from below by a given sequence. In addition, we show an example of an amenable group that has such a lower bound for every free p.m.p. action.
We show that, generically, the unique invariant measure of a sufficiently regular piecewise smooth circle homeomorphism with irrational rotation number and zero mean nonlinearity (e.g. piecewise linear) has zero Hausdorff dimension. To encode this generic condition, we consider piecewise smooth homeomorphisms as generalized interval exchange transformations (GIETs) of the interval and rely on the notion of combinatorial rotation number for GIETs, which can be seen as an extension of the classical notion of rotation number for circle homeomorphisms to the GIET setting.
A centre of a differential system in the plane $ {\mathbb {R}}^2$ is an equilibrium point $p$ having a neighbourhood $U$ such that $U\setminus \{p\}$ is filled with periodic orbits. A centre $p$ is global when $ {\mathbb {R}}^2\setminus \{p\}$ is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems
where $n \geq 1$, $0< s<1$, $\omega >-\lambda _{1,s}$, $2< p< {2n}/{(n-2s)^+}$, $\lambda _{1,s}>0$ is the lowest eigenvalue of $(-\Delta )^s + |x|^2$. The fractional Laplacian $(-\Delta )^s$ is characterized as $\mathcal {F}((-\Delta )^{s}u)(\xi )=|\xi |^{2s} \mathcal {F}(u)(\xi )$ for $\xi \in \mathbb {R}^n$, where $\mathcal {F}$ denotes the Fourier transform. This solves an open question in [M. Stanislavova and A. G. Stefanov. J. Evol. Equ. 21 (2021), 671–697.] concerning the uniqueness of ground states.
We introduce a new class of generalised quadratic forms over totally real number fields, which is rich enough to capture the arithmetic of arbitrary systems of quadrics over the rational numbers. We explore this connection through a version of the Hardy–Littlewood circle method over number fields.
Many connections and dualities in representation theory and Lie theory can be explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the first-named author shows that relative dominant (and codominant) dimensions are natural tools to classify and distinguish distinct quasi-hereditary covers of a finite-dimensional algebra. In this paper, we prove that the relative dominant dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with respect to a direct summand of the characteristic tilting module is always an even number or infinite and that this homological invariant controls the quality of quasi-hereditary covers that possess a simple preserving duality. To resolve the Temperley–Lieb algebras, we apply this result to the class of Schur algebras $S(2, d)$ and their $q$-analogues. Our second main result completely determines the relative dominant dimension of $S(2, d)$ with respect to $Q=V^{\otimes d}$, the $d$-th tensor power of the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of $q$-Schur algebras $S(2,d)$ give rise to quasi-hereditary covers of Temperley–Lieb algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita equivalent to the Ringel dual of the $q$-Schur algebra $S(2, d)$ and precisely how far these two algebras are from being Morita equivalent, when they are not. These results are compatible with the integral setup, and we use them to deduce that the Ringel dual of a $q$-Schur algebra over the ring of Laurent polynomials over the integers together with some projective module is the best quasi-hereditary cover of the integral Temperley–Lieb algebra.
In this paper, we investigate the structure of certain solutions of the fully nonlinear Yamabe flow, which we call almost quotient Yamabe solitons as they extend quite naturally those already called quotient Yamabe solitons. We present sufficient conditions for a compact almost quotient Yamabe soliton to be either trivial or isometric with an Euclidean sphere. We also characterize noncompact almost gradient quotient Yamabe solitons satisfying certain conditions on both its Ricci tensor and potential function.
In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to $\mathrm{Bir}(\mathbb{P}^2)$. We prove that if the Galois group has order at most $3$, it always extends to a subgroup of the Jonquières group associated with the point $P$. Conversely, with a degree of at least $4$, we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquières maps with respect to $P$. In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.
We define a notion of substitution on colored binary trees that we call substreetution. We show that a point fixed by a substreetution may (or not) be almost periodic, and thus the closure of the orbit under the $\mathbb {F}_{2}^{+}$-action may (or not) be minimal. We study one special example: we show that it belongs to the minimal case and that the number of preimages in the minimal set increases just exponentially fast, whereas it could be expected a super-exponential growth. We also give examples of periodic trees without invariant measures on their orbit. We use our construction to get quasi-periodic colored tilings of the hyperbolic disk.
Consensus-based optimisation (CBO) is a versatile multi-particle metaheuristic optimisation method suitable for performing non-convex and non-smooth global optimisations in high dimensions. It has proven effective in various applications while at the same time being amenable to a theoretical convergence analysis. In this paper, we explore a variant of CBO, which incorporates truncated noise in order to enhance the well-behavedness of the statistics of the law of the dynamics. By introducing this additional truncation in the noise term of the CBO dynamics, we achieve that, in contrast to the original version, higher moments of the law of the particle system can be effectively bounded. As a result, our proposed variant exhibits enhanced convergence performance, allowing in particular for wider flexibility in choosing the noise parameter of the method as we confirm experimentally. By analysing the time evolution of the Wasserstein-$2$ distance between the empirical measure of the interacting particle system and the global minimiser of the objective function, we rigorously prove convergence in expectation of the proposed CBO variant requiring only minimal assumptions on the objective function and on the initialisation. Numerical evidences demonstrate the benefit of truncating the noise in CBO.
We study the most general class of eigenfunction expansions for abstract normal operators with pure point spectrum in a complex Hilbert space. We find sufficient conditions for such expansions to be unconditionally convergent in spaces with two norms and also estimate the degree of this convergence. Our result essentially generalizes and complements the known theorems of Krein and of Krasnosel'skiĭ and Pustyl'nik. We apply it to normal elliptic pseudodifferential operators on compact boundaryless $C^{\infty }$-manifolds. We find generic conditions for eigenfunction expansions induced by such operators to converge unconditionally in the Sobolev spaces $W^{\ell }_{p}$ with $p\gt 2$ or in the spaces $C^{\ell }$ (specifically, for the $p$-th mean or uniform convergence on the manifold). These conditions are sufficient and necessary for the indicated convergence on Sobolev or Hörmander function classes and are given in terms of parameters characterizing these classes. We also find estimates for the degree of the convergence on such function classes. These results are new even for differential operators on the circle and for multiple Fourier series.
In this work, we present an alternative approach to obtain a solenoidal Lipschitz truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Equ. 253 (2012), 1910–1942.]. More precisely, the goal of the truncation is to modify a function $u \in W^{1,p}(\mathbb {R}^N;\mathbb {R}^N)$ that satisfies the additional constraint $\operatorname {div} u=0$, such that its modification $\tilde {u}$ is Lipschitz continuous and divergence-free. This approach is different to the approaches outlined in the aforementioned work and D. Breit, L. Diening and S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013), 2671–2700, Section 4] and is able to obtain the rather strong bound on the difference between $u$ and $\tilde {u}$ from the former article. Finally, we outline how the approach pursued in this work may be generalized to closed differential forms.
This paper is devoted to the structural stability of a transonic shock passing through a flat nozzle for two-dimensional steady compressible flows with an external force. We first establish the existence and uniqueness of one-dimensional transonic shock solutions to the steady Euler system with an external force by prescribing suitable pressure at the exit of the nozzle when the upstream flow is a uniform supersonic flow. It is shown that the external force helps to stabilize the transonic shock in flat nozzles and the shock position is uniquely determined. Then we are concerned with the structural stability of these transonic shock solutions when the exit pressure is suitably perturbed. One of the new ingredients in our analysis is to use the deformation-curl decomposition to the steady Euler system developed by Weng and Xin [Sci. Sinica Math., 49 (2019), pp. 307–320] to deal with the transonic shock problem.
We show that the mode-locking region of the family of quasi-periodically forced Arnold circle maps with a topologically generic forcing function is dense. This gives a rigorous verification of certain numerical observations in [M. Ding, C. Grebogi and E. Ott. Evolution of attractors in quasiperiodically forced systems: from quasiperiodic to strange nonchaotic to chaotic. Phys. Rev. A39(5) (1989), 2593–2598] for such forcing functions. More generally, under some general conditions on the base map, we show the density of the mode-locking property among dynamically forced maps (defined in [Z. Zhang. On topological genericity of the mode-locking phenomenon. Math. Ann.376 (2020), 707–72]) equipped with a topology that is much stronger than the $C^0$ topology, compatible with smooth fiber maps. For quasi-periodic base maps, our result generalizes the main results in [A. Avila, J. Bochi and D. Damanik. Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math. J.146 (2009), 253–280], [J. Wang, Q. Zhou and T. Jäger. Genericity of mode-locking for quasiperiodically forced circle maps. Adv. Math.348 (2019), 353–377] and Zhang (2020).
We prove that if two free probability-measure-preserving (p.m.p.) ${\mathbb Z}$-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every ${\mathbb Z}$-odometer is Shannon orbit equivalent to the universal ${\mathbb Z}$-odometer.