To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Singularly perturbed ordinary differential equations often exhibit Stokes’ phenomenon, which describes the appearance and disappearance of oscillating exponentially small terms across curves in the complex plane known as Stokes lines. These curves originate at singular points in the leading-order solution to the differential equation. In many important problems, it is impossible to obtain a closed-form expression for these leading-order solutions, and it is therefore challenging to locate these singular points. We present evidence that the analytic leading-order solution of a linear differential equation can be replaced with a numerical rational approximation using the adaptive Antoulas–Anderson (AAA) method. Despite such an approximation having completely different singularity types and locations, we show that the subsequent exponential asymptotic analysis accurately predicts the exponentially small behaviour present in the solution. For sufficiently small values of the asymptotic parameter, this approach breaks down; however, the range of validity may be extended by increasing the number of poles in the rational approximation. We present a related nonlinear problem and discuss the challenges that arise due to nonlinear effects. Overall, our approach allows for the study of exponentially small asymptotic effects without requiring an exact analytic form for the leading-order solution; this permits exponential asymptotic methods to be used in a much wider range of applications.
We show that for $n \neq 1,4$, the simplicial volume of an inward tame triangulable open $n$-manifold $M$ with amenable fundamental group at infinity at each end is finite; moreover, we show that if also $\pi _1(M)$ is amenable, then the simplicial volume of $M$ vanishes. We show that the same result holds for finitely-many-ended triangulable manifolds which are simply connected at infinity.
We consider planar flow involving two viscous fluids in a porous medium. One fluid is injected through a line source at the origin and moves radially outwards, pushing the second, ambient fluid outwards. There is an interface between the two fluids and if the inner injected fluid is of lower viscosity, the interface is unstable to small disturbances and radially directed unstable Saffman–Taylor fingers are produced. A linearized theory is presented and is compared with nonlinear results obtained using a numerical spectral method. An additional theory is also discussed, in which the sharp interface is replaced with a narrow diffuse interfacial region. We show that the nonlinear results are in close agreement with the linearized theory for small-amplitude disturbances at early times, but that large-amplitude fingers develop at later times and can even detach completely from the initial injection region.
We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$. This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
Schmidt games and the Cantor winning property give alternative notions of largeness, similar to the more standard notions of measure and category. Being intuitive, flexible, and applicable to recent research made them an active object of study. We survey the definitions of the most common variants and connections between them. A new game called the Cantor game is invented and helps with presenting a unifying framework. We prove surprising new results such as the coincidence of absolute winning and $1$ Cantor winning in metric spaces, and the fact that $1/2$ winning implies absolute winning for subsets of $\mathbb {R}$. We also suggest a prototypical example of a Cantor winning set to show the ubiquity of such sets in metric number theory and ergodic theory.
Mathematical modelling of microwaves travelling through bauxite ore provides a way to compute moisture content in the free space transmission method given data on signal attenuation, phase shift and variable bauxite depth. We extend a recently developed four-layer model that uses coupled ordinary differential wave equations for the electric field together with continuity boundary conditions at interfaces between ore, air and antenna to find a solution that incorporates multiple internal reflections in ore and air. The model provides good fits to data, depending on ore permittivity and conductivity.
Our extensions are to use effective medium models to obtain electromagnetic properties of the ore mixture from moisture content and to incorporate the damping effects of scattering from the ore surface. Our model leads to a formula for the received signal showing how signal strengths SS and phase shifts depend on the moisture content of the bauxite ore, through the effects of moisture on permittivity and conductivity. We show that SS may be noninvertible, indicating that attenuation data alone cannot be used to infer moisture content. Combining with phase data typically corrects the noninvertibility. Reducing the operating frequency dramatically improves the usefulness of signal strength data for inferring moisture content.
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$-distinguished Iwahori-spherical representations of ${\mathbb H} (E)$. For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$, we prove a numerical criterion of ${\mathbb H} (F)$-distinction. As an application, we classify the ${\mathbb H} (F)$-distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
In this paper we determine the homotopy types of the reduced suspension space of certain connected orientable closed smooth $five$-manifolds. As applications, we compute the reduced $K$-groups of $M$ and show that the suspension map between the third cohomotopy set $\pi ^3(M)$ and the fourth cohomotopy set $\pi ^4(\Sigma M)$ is a bijection.
The Basilica group is a well-known 2-generated weakly branch, but not branch, group acting on the binary rooted tree. Recently, a more general form of the Basilica group has been investigated by Petschick and Rajeev, which is an $s$-generated weakly branch, but not branch, group that acts on the $m$-adic tree, for $s,m\ge 2$. A larger family of groups, which contains these generalised Basilica groups, is the family of iterated monodromy groups. With the new developments by Francoeur, the study of the existence of maximal subgroups of infinite index has been extended from branch groups to weakly branch groups. Here we show that a subfamily of iterated monodromy groups, which more closely resemble the generalised Basilica groups, have maximal subgroups only of finite index.
We study the joint distribution of values of a pair consisting of a quadratic form ${\mathbf q}$ and a linear form ${\mathbf l}$ over the set of integral vectors, a problem initiated by Dani and Margulis [Orbit closures of generic unipotent flows on homogeneous spaces of $\mathrm{SL}_3(\mathbb{R})$. Math. Ann.286 (1990), 101–128]. In the spirit of the celebrated theorem of Eskin, Margulis and Mozes on the quantitative version of the Oppenheim conjecture, we show that if $n \ge 5$, then under the assumptions that for every $(\alpha , \beta ) \in {\mathbb {R}}^2 \setminus \{ (0,0) \}$, the form $\alpha {\mathbf q} + \beta {\mathbf l}^2$ is irrational and that the signature of the restriction of ${\mathbf q}$ to the kernel of ${\mathbf l}$ is $(p, n-1-p)$, where ${3\le p\le n-2}$, the number of vectors $v \in {\mathbb {Z}}^n$ for which $\|v\| < T$, $a < {\mathbf q}(v) < b$ and $c< {\mathbf l}(v) < d$ is asymptotically $ C({\mathbf q}, {\mathbf l})(d-c)(b-a)T^{n-3}$ as $T \to \infty $, where $C({\mathbf q}, {\mathbf l})$ only depends on ${\mathbf q}$ and ${\mathbf l}$. The density of the set of joint values of $({\mathbf q}, {\mathbf l})$ under the same assumptions is shown by Gorodnik [Oppenheim conjecture for pairs consisting of a linear form and a quadratic form. Trans. Amer. Math. Soc.356(11) (2004), 4447–4463].
Kobayashi–Ochiai proved that the set of dominant maps from a fixed variety to a fixed variety of general type is finite. We prove the natural extension of their finiteness theorem to Campana’s orbifold pairs.
Motivated by the impact of worsening climate conditions on vegetation patches, we study dynamic instabilities in an idealised Ginzburg–Landau model. Our main results predict time instances of sudden drops in wavenumber and the resulting target states. The changes in wavenumber correspond to the annihilation of individual vegetation patches when resources are scarce and cannot support the original number of patches. Drops happen well after the primary pattern has destabilised at the Eckhaus boundary and key to distinguishing between the disappearance of 1,2 or more patches during the drop are complex spatio-temporal resonances in the linearisation at the unstable pattern. We support our results with numerical simulations and expect our results to be conceptually applicable universally near the Eckhaus boundary, in particular in more realistic models.
Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each $u\in L^2(\mathbb {R}^N)$, are defined as the double integrals of weighted, squared difference quotients of $u$. Given a family of weights $\{\rho _{\varepsilon} \}$, $\varepsilon \in (0,\,1)$, we devise sufficient and necessary conditions on $\{\rho _{\varepsilon} \}$ for the associated nonlocal functionals to converge as $\varepsilon \to 0$ to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.
We propose a new fractional Laplacian for bounded domains, expressed as a conservation law and thus particularly suited to finite-volume schemes. Our approach permits the direct prescription of no-flux boundary conditions. We first show the well-posedness theory for the fractional heat equation. We also develop a numerical scheme, which correctly captures the action of the fractional Laplacian and its anomalous diffusion effect. We benchmark numerical solutions for the Lévy–Fokker–Planck equation against known analytical solutions. We conclude by numerically exploring properties of these equations with respect to their stationary states and long-time asymptotics.
We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, $\mathrm{Re}\ll 1$. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of $\log \mathrm{Re}$. We here make use of the hybrid approximation of Kropinski, Ward & Keller [(1995) SIAM J. Appl. Math.55, 1484], based upon a robust asymptotic expansion in powers of $\mathrm{Re}$. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor $S$, a slowly varying function of $\mathrm{Re}$, with a $\mathrm{Re}$-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of $\log \mathrm{Re}$ via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, $\mathrm{Pe}\gg 1$. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With $S$ appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as $0.5799(S\,\mathrm{Pe})^{1/3}$. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson & Smith (1968) Phys. Fluids11, 933] even for moderate $\mathrm{Re}$-values.
For an odd prime $p$, we consider free actions of $(\mathbb {Z}_{/{p}})^2$ on $S^{2n-1}\times S^{2n-1}$ given by linear actions of $(\mathbb {Z}_{/{p}})^2$ on $\mathbb {R}^{4n}$. Simple examples include a lens space cross a lens space, but $k$-invariant calculations show that other quotients exist. Using the tools of Postnikov towers and surgery theory, the quotients are classified up to homotopy by the $k$-invariants and up to homeomorphism by the Pontrjagin classes. We will present these results and demonstrate how to calculate the $k$-invariants and the Pontrjagin classes from the rotation numbers.
We apply Takesaki’s and Connes’s ideas on structure analysis for type III factors to the study of links (a short term of Markov kernels) appearing in asymptotic representation theory.
Pavlov [Adv. Math.295 (2016), 250–270; Nonlinearity32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.
This paper describes how to compute algorithmically certain twisted signature invariants of a knot $K$ using twisted Blanchfield forms. An illustration of the algorithm is implemented on $(2,q)$-torus knots. Additionally, using satellite formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.