To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to prove a qualitative property, namely the preservation of positivity, for Schrödinger-type operators acting on $L^p$ functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case $p\neq 2$, i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in $L^p$.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour $\mathrm {GL}_n$ en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie $\ell $-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.
In this paper, we study transitivity of partially hyperbolic endomorphisms of the two torus whose action in the first homology group has two integer eigenvalues of moduli greater than one. We prove that if the Jacobian is everywhere greater than the modulus of the largest eigenvalue, then the map is robustly transitive. For this, we introduce Blichfedt’s theorem as a tool for extracting dynamical information from the action of a map in homology. We also treat the case of specially partially hyperbolic endomorphisms, for which we obtain a complete dichotomy: either the map is transitive and conjugated to its linear part, or its unstable foliation must contain an annulus which may either be wandering or periodic.
We establish two-term spectral asymptotics for the operator of linear elasticity with mixed boundary conditions on a smooth compact Riemannian manifold of arbitrary dimension. We illustrate our results by explicit examples in dimension two and three, thus verifying our general formulae both analytically and numerically.
There are several factors that can cause the excessive accumulation of biofluid in human tissue, such as pregnancy, local traumas, allergic responses or the use of certain therapeutic medications. This study aims to further investigate the shear-dependent peristaltic flow of Phan–Thien–Tanner (PTT) fluid within a planar channel by incorporating the phenomenon of electro-osmosis. This research is driven by the potential biomedical applications of this knowledge. The non-Newtonian fluid features of the PTT fluid model are considered as physiological fluid in a symmetric planar channel. This study is significant, as it demonstrates that the chyme in the small intestine can be modelled as a PTT fluid. The governing equations for the flow of the ionic liquid, thermal radiation and heat transfer, along with the Poisson–Boltzmann equation within the electrical double layer, are discussed. The long-wavelength ($\delta \ll 1$) and low-Reynolds-number approximations ($Re \to 0$) are used to simplify the simultaneous equations. The solutions analyse the Debye electronic length parameter, Helmholtz–Smoluchowski velocity, Prandtl number and thermal radiation. Additionally, streamlines are used to examine the phenomenon of entrapment. Graphs are used to explain the influence of different parameters on the flow and temperature. The findings of the current model have practical implications in the design of microfluidic devices for different particle transport phenomena at the micro level. Additionally, the noteworthy results highlight the advantages of electro-osmosis in controlling both flow and heat transfer. Ultimately, our objective is to use these findings as a guide for the advancement of lab-on-a-chip systems.
In this paper, we investigate the twisted GGP conjecture for certain tempered representations using the theta correspondence and establish some special cases, namely when the L-parameter of the unitary group is the sum of conjugate-dual characters of the appropriate sign.
We have a division into classical and higher special functions. The singular boundary eigenvalue problems producing classical special functions are not specifically denoted, while for higher special functions they are called central two-point connection problems (CTCPs). Solving a CTCP means determining the parameters of the underlying differential equation for which a particular solution obeys the singular boundary conditions. The method is developed in detail, and demonstrated for the Heun class. This is the main mathematical part of the book. We see the power of the Jaffé method in generalising such CTCPs. The asymptotic behaviour of the power series and the asymptotic factor is balanced in such a way that the eigenfunction behaviour is apparent when the eigenvalue parameter admits an eigenvalue. This is the ingenious aspect of Jaffé’s ansatz. Although dealing with more fundamental mathematical issues, we fill a certain gap in understanding how the Jaffé approach to the CTCP works when applied to Fuchsian differential equations and their confluent and reduced cases. The considerations are split into the basic concept and the calculatory procedure of carrying it out.
Bedford and Smillie [A symbolic characterization of the horseshoe locus in the Hénon family. Ergod. Th. & Dynam. Sys.37(5) (2017), 1389–1412] classified the dynamics of the Hénon map $f_{a, b} : (x, y)\mapsto (x^2-a-by, x)$ defined on $\mathbb {R}^2$ in terms of a symbolic dynamics when $(a, b)$ is close to the boundary of the horseshoe locus. The purpose of the current article is to generalize their results for all $b\ne 0$ (including the case $b < 0$ as well). The method of the proof is first to regard $f_{a, b}$ as a complex dynamical system in $\mathbb {C}^2$ and second to introduce the new Markov-like partition in $\mathbb {R}^2$ constructed by us [On parameter loci of the Hénon family. Comm. Math. Phys.361(2) (2018), 343–414].
We now present examples of higher special functions. Since not all details are contained in the theoretical discussions of the field, it is these examples that mostly contribute to enable the reader to treat self-reliantly his or her concrete problem. Starting from the question of whether nature is linear or non-linear, the answer is not unambiguous. For weather phenomena, the underlying dynamics is undoubtedly non-linear. However, in the world of atoms and elementary particles, the processes become fundamentally linear. Mathematically, this is expressed by the fact that the underlying differential equation (the so-called Schrödinger equation) becomes linear in nature as soon as atomic processes are described. Hence, a substantial part of the examples here are devoted to solving boundary eigenvalue problems of the Schrödinger equation, the fundamental differential equation in the description of microscopic nature (quantum theory). The aim is autonomy to create new special functions by applying the methods developed. There may well be as yet unseen aspects, a variety of hitherto unknown special functions or even mathematically relevant new discoveries in the field.
Classical special functions are a traditional field of mathematics. As particular solutions of singular boundary eigenvalue problems of linear ordinary differential equations of second order, they are, by definition, functions that can be represented as the product of an asymptotic factor and a (finite or infinite) Taylor series. The coefficients of these series are, by definition, solutions of two-term recurrence relations, from which an algebraic boundary eigenvalue criterion can be formulated. This method is called the Sommerfeld polynomial method. Thus, one can say that the boundary eigenvalue condition is, by definition, algebraic in nature. It is the central message of this book that one can resolve this restriction methodically. The method developed for this also applies to problems that can be solved with classical methods. So, in order to present the newly developed method in light of what is known, and understand the new perspective more easily, the method is applied in this chapter to already known solutions. Accordingly, it is a ’phenomenological’ introduction, based on the ad hoc introduction of the relevant quantities.