To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
Existence of specific eternal solutions in exponential self-similar form to the following quasilinear diffusion equation with strong absorption
\[ \partial_t u=\Delta u^m-|x|^{\sigma}u^q, \]
posed for $(t,\,x)\in (0,\,\infty )\times \mathbb {R}^N$, with $m>1$, $q\in (0,\,1)$ and $\sigma =\sigma _c:=2(1-q)/ (m-1)$ is proved. Looking for radially symmetric solutions of the form
we show that there exists a unique exponent $\beta ^*\in (0,\,\infty )$ for which there exists a one-parameter family $(u_A)_{A>0}$ of solutions with compactly supported and non-increasing profiles $(f_A)_{A>0}$ satisfying $f_A(0)=A$ and $f_A'(0)=0$. An important feature of these solutions is that they are bounded and do not vanish in finite time, a phenomenon which is known to take place for all non-negative bounded solutions when $\sigma \in (0,\,\sigma _c)$.
For $s\in [\tfrac {1}{2},\, 1)$, let $u$ solve $(\partial _t - \Delta )^s u = Vu$ in $\mathbb {R}^{n} \times [-T,\, 0]$ for some $T>0$ where $||V||_{ C^2(\mathbb {R}^n \times [-T, 0])} < \infty$. We show that if for some $0<\mathfrak {K} < T$ and $\epsilon >0$
In this note, we present examples of non-quasi-geodesic metric spaces which are hyperbolic (i.e., satisfying Gromov’s $4$-point condition) while the intersection of any two metric balls therein does not either ‘look like’ a ball or has uniformly bounded eccentricity. This answers an open question posed by Chatterji and Niblo.
Based on previous work of the authors, to any S-adic development of a subshift X a ‘directive sequence’ of commutative diagrams is associated, which consists at every level $n \geq 0$ of the measure cone and the letter frequency cone of the level subshift $X_n$ associated canonically to the given S-adic development. The issuing rich picture enables one to deduce results about X with unexpected directness. For instance, we exhibit a large class of minimal subshifts with entropy zero that all have infinitely many ergodic probability measures. As a side result, we also exhibit, for any integer $d \geq 2$, an S-adic development of a minimal, aperiodic, uniquely ergodic subshift X, where all level alphabets $\mathcal A_n$ have cardinality $d,$ while none of the $d-2$ bottom level morphisms is recognizable in its level subshift $X_n \subseteq \mathcal A_n^{\mathbb {Z}}$.
where $b,\, \omega >0$ are constants, $p>2$. Based on variational methods, regularity theory and Schwarz symmetrization, the equivalence of ground state solutions for the above problem with the minimizers for some minimization problems is obtained. In particular, a new scale technique, together with Lagrange multipliers, is delicately employed to overcome some intrinsic difficulties.
The Dehn quandle of a closed orientable surface is the set of isotopy classes of nonseparating simple closed curves with a natural quandle structure arising from Dehn twists. In this paper, we consider the finiteness of some canonical quotients of these quandles. For a surface of positive genus, we give a precise description of the 2-quandle of its Dehn quandle. Further, with some exceptions for genus more than 2, we determine all values of n for which the n-quandle of its Dehn quandle is finite. The result can be thought of as the Dehn quandle analogue of a similar result of Hoste and Shanahan for link quandles [‘Links with finite n-quandles’, Algebr. Geom. Topol.17(5) (2017), 2807–2823]. We also compute the size of the smallest nontrivial quandle quotient of the Dehn quandle of a surface. Along the way, we prove that the involutory quotient of an Artin quandle is precisely the corresponding Coxeter quandle, and also determine the smallest nontrivial quotient of a braid quandle.
For $\mathscr {B} \subseteq \mathbb {N} $, the $ \mathscr {B} $-free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $, have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$-free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.
The present paper is concerned with the infimum of the norm of potentials for Sturm–Liouville eigenvalue problems with Dirichlet boundary condition such that the first two eigenvalues are known. The explicit quantity of the infimum is given by the two eigenvalues.
For a real number $0<\epsilon <1/3$, we show that the anti-canonical volume of an $\epsilon $-klt Fano $3$-fold is at most $3,200/\epsilon ^4$, and the order $O(1/\epsilon ^4)$ is sharp.
In this article, we investigate the spectra of the stability and Hodge–Laplacian operators on a compact manifold immersed as a hypersurface in a smooth metric measure space, possibly with singularities. Using ideas developed by A. Ros and A. Savo, along with an ingenious computation, we have obtained a comparison between the spectra of these operators. As a byproduct of this technique, we have deduced an estimate of the Morse index of such hypersurfaces.
The problem of non-integrability of the circular restricted three-body problem is very classical and important in the theory of dynamical systems. It was partially solved by Poincaré in the nineteenth century: he showed that there exists no real-analytic first integral which depends analytically on the mass ratio of the second body to the total and is functionally independent of the Hamiltonian. When the mass of the second body becomes zero, the restricted three-body problem reduces to the two-body Kepler problem. We prove the non-integrability of the restricted three-body problem both in the planar and spatial cases for any non-zero mass of the second body. Our basic tool of the proofs is a technique developed here for determining whether perturbations of integrable systems which may be non-Hamiltonian are not meromorphically integrable near resonant periodic orbits such that the first integrals and commutative vector fields also depend meromorphically on the perturbation parameter. The technique is based on generalized versions due to Ayoul and Zung of the Morales–Ramis and Morales–Ramis–Simó theories. We emphasize that our results are not just applications of the theories.
We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting $2$-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for $(d_0,d_1)$-semi-regular trees such that $d_0,d_1\in \Theta $, where $\Theta $ is an asymptotically dense set of positive integers.
For a continuous $\mathbb {N}^d$ or $\mathbb {Z}^d$ action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic $\mathbb {Z}$ actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of $\mathbb {Z}^d$ with positive entropy under the condition of existence of summable homoclinic points.
We describe two kinds of regular invariant measures on the boundary path space $\partial E$ of a second countable topological graph E, which allows us to describe all extremal tracial weights on $C^{*}(E)$ which are not gauge-invariant. Using this description, we prove that all tracial weights on the C$^{*}$-algebra $C^{*}(E)$ of a second countable topological graph E are gauge-invariant when E is free. This in particular implies that all tracial weights on $C^{*}(E)$ are gauge-invariant when $C^{*}(E)$ is simple and separable.
We obtain the following embedding theorem for symbolic dynamical systems. Let G be a countable amenable group with the comparison property. Let X be a strongly aperiodic subshift over G. Let Y be a strongly irreducible shift of finite type over G that has no global period, meaning that the shift action is faithful on Y. If the topological entropy of X is strictly less than that of Y and Y contains at least one factor of X, then X embeds into Y. This result partially extends the classical result of Krieger when $G = \mathbb {Z}$ and the results of Lightwood when $G = \mathbb {Z}^d$ for $d \geq 2$. The proof relies on recent developments in the theory of tilings and quasi-tilings of amenable groups.