To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The study of similarity solutions of Prandtl's equations for the steady two dimensional flow of an incompressible fluid past a rigid wall leads to the equation
where the primes denote differentiation with respect to the independent variable t, and λ is a parameter. It was first obtained in 1930 by Falkner and Skan [3]. For its derivation we refer to Schlichting [6] here we merely note that the function f′(t) represents, after suitable normalization, the velocity parallel to the wall.
Let P be a simplicial d-polytope, and, for – 1 ≤ j < d, let fj(P) denote the number of j-faces of P (with f_1 (P) = 1). For k = 0, ..., [½d] – 1, we define
and conjecture that
gk(d + 1)(P) ≥ 0,
with equality in the k-th relation if and only if P can be subdivided into a simplicial complex, all of whose simplices of dimension at most d – k – 1 are faces of P. This conjecture is compared with the usual lower-bound conjecture, evidence in support of the conjecture is given, and it is proved that any linear inequality satisfied by the numbers fj(P) is a consequence of the linear inequalities given above.
An example will be given of a compact linear set K which is of zero or non-σ-finite measure for every translation-invariant Borel measure. This answers a question asked me by C. Dellacherie.
Let D denote the unit disc in the complex plane. If p and q are two complex numbers, let x(p, q) denote the chordal distance between p and q on the Riemann sphere. In particular, we have the formula
and
The following problem was posed by Paul Gauthier: if f(z) and g(z) are meromorphic functions in D such that Clunie [4] has answered this problem in the negative by constructing different meromorphic functions f(z) and g(z) with the desired property. However, the functions constructed by Clunie both have an infinity of poles in D. It is the purpose of this note to give an example of two analytic functions―which thus have no poles―which also give a negative answer to the problem of Gauthier.
Every compact Hausdorff space with no isolated points admits a non-atomic measure.
This note is concerned with the converse problem in a more general set up. Here we deal with certain properties of the family of completely regular spaces admitting no continuous measures. In §3 it is shown that this family contains spaces with no isolated points, thus theorem (1.1) does not generalize to completely regular spaces. In §4 a canonical decomposition of the compact members of the above family into discrete subspaces is obtained, and it is shown that these spaces are metrizable whenever they satisfy the first axiom of countability.
The method of the large sieve has played a very important role in number theory. It turns out that estimates of exponential sums are of basic importance for large sieve inequalities. Let
be an exponential sum with complex coefficients c(n). It follows from Theorem 1 of Bombieri and Davenport [1] that
A section of the non-negative orthant by an affine subspace is a polyhedral set. A technique, analogous to that of Gale diagrams, is described which enables one to determine the facial structure of such a polyhedral set.
Both S. Bergman [1] and I. N. Vekua [13] have constructed integral operators which map ordered pairs of analytic functions of one complex variable onto solutions of fourth order elliptic equations in two independent variables. Such operators play an important role in the investigation of the analytic properties of solutions to higher order elliptic equations and in the approximation of solutions to boundary value problems associated with these equations. Unfortunately, little progress has been made in developing an analogous theory for elliptic equations in more than two independent variables. Recently, however, Colton and Gilbert [7] constructed integral operators for a class of fourth order elliptic equations with spherically symmetric coefficients in p + 2 (p ≥ 0) independent variables, and at present Dean Kukral [11], a student of R. P. Gilbert, is in the process of trying to extend some recent results of Colton [3, 4, 5] for second order equations in three independent variables to the fourth order case.
The concepts of bounded paracompactness and bounded metacompactness were introduced and studied in [3]. In this paper we define bounded full normality and show that this concept is equivalent to bounded paracompactness.
It is known that countable paracompactness and countable metacompactness are equivalent properties in a normal space. We show that bounded countable metacompactness is equivalent to bounded countable paracompactness in a normal space and that bounded countable paracompactness is equivalent to bounded paracompactness in a hereditarily paracompact space.
The properties of the solution of the differential equation governing the evolution of localised line-centred disturbances to a marginally unstable plane parallel flow were described by Hocking and Stewartson (1972). A corresponding study of the properties when the initial disturbance is point-centred is presented here. A localised burst at a finite time can be produced, for certain values of the coefficients which can be determined analytically. When the equation permits solutions with circular symmetry, two kinds of bursting solutions, as well as solutions which remain finite, are possible, but the boundary between bursting and finite solutions could not be determined analytically.
Let ˜ be an equivalence relation on a topological space X. A point x ε X i s stable with respect to ˜ if it is in the interior of an equivalence class. We may also add, if ambiguity arises, that x is stable under perturbations in X. Let E be a Banach space, and let L(E) be the Banach space of continuous linear endomorphisms of E, with norm given by |T| = sup{ |T(x) | : |x| = 1}. In this paper we discuss stability of elements of L(E) with respect to some natural equivalence relations.
Maxwell's equations within a dielectric and/or a magnetic medium were first developed macroscopically and must be complemented by constitutive relations to obtain solutions. These relations connect D with E (and with B in optically active material) and H with B (and again with E in optically active material). The atomic and molecular theories of quantum mechanics allow a microscopic approach to derive these constitutive relations where the macroscopic electric and magnetic fields are averages of the microscopic fields e and b. In classical electromagnetic theory Lorentz [1] originally showed how to derive the Maxwell's macroscopic equations from electron theory using microscopic fields obeying the Maxwell's equations in vacuo but coupled to electronic and ionic sources. There are two distinct steps in this procedure. The first introduces microscopic polarization fields, both electric amd magnetic, p and m from which microscopic electric displacement vector field d and auxiliary magnetic field h are simply constructed. The resulting equations for the microscopic fields e, b, d, and h are called the atomic field equations. The second step is the statistical one where the macroscopic fields E, B, D, and H are defined as averages of the microscopic fields and these macroscopic fields are then shown to obey the phenomenological macroscopic Maxwell's equations. A historical appraisal may be found in the recent book by de Groot [2].
The purpose of this paper is to demonstrate that a number of properties of independence spaces are of finite character, thus making it possible to easily generalise known theorems for finite spaces, or matroids, to independence spaces on infinite sets.
Problem I was raised (oral communication) by Goffman some three years ago, and I found the example then. Problem II was raised at about the same time by Topsøe; Christensen has given an affirmative answer for spaces satisfying certain additional conditions.
It is easy to see that if the answer to problem I were affirmative then so would be that to problem II; therefore our counter-example for problem II implies the existence of one for problem I. It is also possible that another counter-example for problem I could be found by analysing the construction of Dieudonn6 in [1], which is also concerned (implicitly) with a failure of Vitali's theorem. Nevertheless our construction may be of independent interest.
If G is a finite group with classifying space BG and complex representation ring R(G), one defines the topological filtration on R(G) by means of the natural map Ψ: R(G) → KU(BG).
Certain properties of ascending sequences of quotient rings of points of algebraic varieties were investigated by O. Zariski in [4] and some related problems were discussed in [3].
The initial structure of wing-body interaction in supersonic flow was first investigated by Nielsen (1951), who analysed the steady supersonic inviscid flow past a proto-type wing-body combination consisting of an unswept thin wing at incidence and lying approximately in the axial plane of a non-lifting cylindrical body with a circular cross-section. In particular, he obtained the first two terms in the series expansion of the velocity potential at the start of the root chord where the wing and body meet. More recently, further theoretical studies which relate the problem to similar problems in diffraction theory have been carried out by Stewartson (1966), Jones (1967), Waechter (1969), and Clark (1970). In addition, Stewartson (1968) has extended Nielsen's formula for the following cases:
(a) the lifting wing with rounded leading edge,
(b) the flat plate wing at incidence with supersonic leading edge,
(c) the flat plate wing at incidence with subsonic leading edge in both symmetrical and antisymmetrical cases.
Let G and H be Hausdorff locally compact groups. By R(G, H) we denote the space of continuous homomorphisms of G into H equipped with the compact-open topology, namely that which is generated by subsets of the form
where K is any compact subset of G and U is any open subset of H. Further, let R0(G, H) be the subset of R(G, H) consisting of elements r satisfying the conditions that the quotient space H/r(G) is compact and r is proper, i.e., the action of G on H defined as the action by left translations of r(G) on H is proper. It has been shown by H. Abels [2] that if G and H are such that at least one of them has a compact defining subset then R0(G,H) is open in R(G,H). Moreover, for each r0 ∈ R0(G,H) there exists a neighbourhood M and a compact subset F of H such that r(G) F = H for all r ∈ M and for each compact subset K of H the union is a relatively compact subset of G. It is furthermore shown in [1] that if G contains no small subgroups and H is connected then the subset of R0(G, H) consisting of isomorphisms of G into H is open in R(G, H). These results, in the case in which H is a connected Lie Group and G is a discrete group, have been established by Weil in [5] and [6] appendix 1.