To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Selective withdrawal from a stratified stream is considered. The average density of the withdrawn fluid and the flow pattern are found, within the limitations on the densimetric Froude number and the withdrawal rate specified in this paper, to depend on the strength and location of the sink, and very little on any slight variation in the velocity distribution far upstream and the densimetric Froude number. The upstream density distribution is assumed linear, but many other density distributions can be similarly treated.
Linear multiplicative programs are an important class of nonconvex optimisation problems that are currently the subject of considerable research as regards the development of computational algorithms. In this paper, we show that mathematical programs of this nature are, in fact, a special case of more general signomial programming, which in turn implies that research on this latter problem may be valuable in analysing and solving linear multiplicative programs. In particular, we use signomial programming duality theory to establish a dual program for a nonconvex linear multiplicative program. An interpretation of the dual variables is given.
The classical dynamics of non-relativistic particles are described by the Schrödinger wave equation, perturbed by quantum potential nonlinearity. Quantization of this dispersionless equation, implemented by deformation of the potential strength, recovers the standard Schrödinger equation. In addition, the classically forbidden region corresponds to the Planck constant analytically continued to pure imaginary values. We apply the same procedure to the NLS and DNLS equations, constructing first the corresponding dispersionless limits and then adding quantum deformations. All these deformations admit the Lax representation as well as the Hirota bilinear form. In the classically forbidden region we find soliton resonances and black hole phenomena. For deformed DNLS the chiral solitons with single event horizon and resonance dynamics are constructed.
To model cohesionless granular flow using continuum theory, the usual approach is to assume the cohesionless Coulomb-Mohr yield condition. However, this yield condition assumes that the angle of internal friction is constant, when according to experimental evidence for most powders the angle of internal friction is not constant along the yield locus, but decreases for decreasing normal stress component σ from a maximum value of π/2. For this reason, we consider here the more general yield function which applies for shear-index granular materials, where the angle of internal friction varies with σ. In this case, failure due to frictional slip between particles occurs when the shear and normal components of stress τ and σ satisfy the so-called Warren Spring equation (|τ|/c)n = 1 − (σ/t), where c, t and n are positive constants which are referred to as the cohesion, tensile strength and shear-index respectively, and experimental evidence indicates for many materials that the value of the shear-index n lies between 1 and 2. For many materials, the cohesion is close to zero and therefore the notion of a cohesionless shear-index granular material arises. For such materials, a continuum theory applying for shear-index cohesionless granular materials is physically plausible as a limiting ideal theory, and any analytical solutions might provide important benchmarks for numerical schemes. Here, we examine the cohesionless shearindex theory for the problem of gravity flow of granular materials through two-dimensional wedge-shaped hoppers, and we attempt to determine analytical solutions. Although some analytical solutions are found, these do not correspond to the actual hopper problem, but may serve as benchmarks for purely numerical schemes. The special analytical solutions obtained are illustrated graphically, assuming only a symmetrical stress distribution.
A thin, partially insulating circular rug is placed on a uniform half space up through which a steady heat flow passes. The corresponding dual integral equations are solved using Tranter's method, finite Legendre transforms and Mellin-Bames contour integrals. An untabulated Bessel (or Stieltjes) transform similar to the discontinuous WeberSchafheitlin integral is evaluated, and a simple expression derived for the rug's surface temperature.
A method is presented for the study of fully developed parallel flow of Newtonian viscous fluid in uniform straight ducts of very general cross-section. The method is based upon the concept of contour lines of constant velocity in a typical cross section of the duct, and uses the function which describes the contour lines as an independent variable to derive the integral momentum equation. The resulting ordinary integro-differential equation is, in principle, much easier to solve than the original momentum equation in partial differential equation form. Several illustrative examples of practical interest are included to explain the method of solution. Some of these solutions are compared with available solutions in the literature. All details are explained by graphs and tables. The method has several interesting features. The study has relevance to biomedical engineering research for blood and urinary tract flow.
In this paper we develop the Laplace-transform method to solve initial-value problems for the velocity potential describing the generation of infinitesimal capillary-gravity waves in a motionless liquid with an inertial surface composed of uniformly distributed floating particles. The two principal problems considered are the forced motions due to a submerged wave source and an immersed vertical plane wave-maker, which begin to operate in a time-dependent manner at a given instant. The transformed potentials are calculated using techniques similar to those which are effective in traditional time-harmonic problems with a free surface. The steady-state development in the time-harmonic example taken demonstrates the existence of outgoing progressive waves under any inertial surface, in contrast to the case of no surface tension when such waves cannot propagate under an inertial surface that is too heavy. The solution is also noted of the Cauchy-Poisson problem for the free motion flowing an intial elevation of the inertial surface, which is obtained by the same method.
We construct a set of functions, say, composed of a cosine function and a sigmoidal transformation γr of order r > 0. The present functions are orthonormal with respect to a proper weight function on the interval [−1, 1]. It is proven that if a function f is continuous and piecewise smooth on [−1, 1] then its series expansion based on converges uniformly to f so long as the order of the sigmoidal transformation employed is 0 < r ≤ 1. Owing to the variational feature of according to the value of r, one can expect improvement of the traditional Fourier series approximation for a function on a finite interval. Several numerical examples show the efficiency of the present series expansion in comparison with the Fourier series expansion.
In the present paper questions related to stability and boundedness with respect to manifolds of solutions of impulsive differential-difference equations are considered. The investigations are carried out by means of piecewise-continuous functions which are analogues of the classical Lyapunov's functions. By means of a vectorial comparison equation and differential inequalities for piecewise-continuous functions, theorems are proved on stability and boundedness with respect to manifolds of solutions of impulsive differential-difference equations with impulse effect at fixed moments.
We consider in this paper a topology (which we call the A-topology) on Minkowski space, the four-dimensional space–time continuum of special relativity and derive its group of homeomorphisms. We define the A-topology to be the finest topology on Minkowski space with respect to which the induced topology on time-like and light-like lines is one-dimensional Euclidean and the induced topology on space-like hyperplanes is three- dimensional Euclidean. It is then shown that the group of homeomorphisms of this topology is precisely the one generated by the inhomogeneous Lorentz group and the dilatations.
The concept of nonautonomous (or cocycle) attractors has become a proper tool for the study of the asymptotic behaviour of general nonautonomous partial differential equations. This is a time-dependent family of compact sets, invariant for the associated process and attracting “from –∞”. In general, the concept is rather different to the classical global attractor for autonomous dynamical systems. We prove a general result on the finite fractal dimensionality of each compact set of this family. In this way, we generalise some previous results of Chepyzhov and Vishik. Our results are also applied to differential equations with a nonlinear term having polynomial growth at most.
Methods which make use of the differential equation ẋ(t) = −J(x)−1f(x), where J(x) is the Jacobian of f(x), have recently been proposed for solving the system of nonlinear equations f(x) = 0. These methods are important because of their improved convergence characteristics. Under general conditions the solution trajectory of the differential equation converges to a root of f and the problem becomes one of solving a differential equation. In this paper we note that the special form of the differential equation can be used to derive single and multistep methods which give improved rates of local convergence to a root.
In this paper, we study controllability and observability problems for the wave and heat equation in a spherical region in Rn, where the control enters in the mixed boundary condition. In the main result, we show that all “finite energy” initial states (i.e. (ω0, ν0) ∈ H1(Ω) × L2 (Ω)) can be steered to zero at time T, using a control f ∈ L2 (∂Ω × [0, T]), provided T > 2. On this basis, we use the duality principle to investigate initial observability for the wave equation. Applying the Fourier transform technique, we obtain controllability and observability results for the heat equation.
For diffusion problems, the boundary conditions are specified at two distinct points, yielding a two end-point boundary value problem which normally requires iterative techniques. For spherical geometry, it is possible to specify the boundary conditions at the same points, approximately, by using an optimization principle for arbitrary diffusivity. When the diffusivity obeys a power or an exponential law, a first integral exists and iteration can be avoided. For those two exact cases, it is shown that the general optimization result is extremely accurate when diffusivity increases rapidly with concentration.
The author has discovered that R. P. Kanwal (J. Math. Phys. 44 (1965), 273–283) proposed a technique similar to the one in this paper. Unfortunately, Kanwal's scheme implies that the elastostatic problem can be reduced generally to the solution of Laplace's equation, a result which is well-known to be incorrect.
By using the spectral Galerkin method, we prove a result on the global existence in time of strong solutions for a system of equations of magnetohydrodynamic type. Several estimates for the solution and their approximations are given. These estimates can be used in the derivation of error bounds for the approximate solutions.
A direct numerical computation is provided for the impedance of a screen consisting of a regular array of slits in a plane wall. The problem is solved within the framework of oscillatory Stokes flow, and results presented as a function of porosity, frequency and viscosity.
Steady two-dimensional free surface flow past a semi-infinite flat plate is considered. The vorticity in the flow is assumed to be constant. For large values of the Froude number F, an analytical relation between F, the vorticity parameter ω and the steepness s of the waves in the far field is derived. In addition numerical solutions are calculated by a boundary integral equation method.
In this paper, a closed-form analytical solution for pricing convertible bonds on a single underlying asset with constant dividend yield is presented. A closed-form analytical formula has apparently never been found for American-style convertible bonds (CBs) of finite maturity time although there have been quite a few approximate solutions and numerical approaches proposed. The solution presented here is written in the form of a Taylor's series expansion, which contains infinitely many terms, and thus is completely analytical and in a closed form. Although it is only for the simplest CBs without call or put features, it is nevertheless the first closed-form solution that can be utilised to discuss convertibility analytically. The solution is based on the homotopy analysis method, with which the optimal converting price has been elegantly and temporarily removed in the solution process of each order, and consequently, the solution of a linear problem can be analytically worked out at each order, resulting in a completely analytical solution for the optimal converting price and the CBs' price.