To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An initial-boundary value problem for a time-fractional diffusion equation is discretized in space, using continuous piecewise-linear finite elements on a domain with a re-entrant corner. Known error bounds for the case of a convex domain break down, because the associated Poisson equation is no longer $H^{2}$-regular. In particular, the method is no longer second-order accurate if quasi-uniform triangulations are used. We prove that a suitable local mesh refinement about the re-entrant corner restores second-order convergence. In this way, we generalize known results for the classical heat equation.
We present a new iterative model order reduction method for large-scale linear time-invariant dynamical systems, based on a combined singular value decomposition–adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side depends on the observability Gramian by the resolution of the Lyapunov equation, and the Krylov side is generated by the adaptive-order rational Arnoldi based on moment matching. The use of the SVD provides stability for the reduced system, and the use of the AORA method providesnumerical efficiency and a relative lower computation complexity. The reduced model obtained is asymptotically stable and minimizes the error ($H_{2}$ and $H_{\infty }$) between the original and the reduced system. Two examples are given to study the performance of the proposed approach.
We investigate the state feedback pinning synchronization of fractional-order complex networks. Based on the stability theory of fractional-order differential systems and state feedback control by a single controller, synchronization conditions for fractional-order complex networks are given. We assume that the coupling matrix is irreducible, and provide a numerical example to illustrate the validity of the proposed conclusions.
In evolutionary theory, a key issue in selection theory is the expected time for a given amount of allele frequency change to occur. Crow and Kimura, by assuming weak selection, presented explicit results for several important cases of the directional selection and of the stochastic process. Those results played an important role in the theory of population genetics. In this paper, first we show that the weak selection assumption can be removed from most of the results of Crow and Kimura, and then we generalize those results to the most general selection model. Next, we estimate the errors of the deterministic formulae produced by proving that the deterministic formulae are limits of the corresponding stochastic formulae when the size of the population tends to infinity. Finally, we present a result which removes the restriction of Kimura’s corresponding results for a favourite recessive selection model, and we also observe that the conclusion made by Kimura about the favourite dominant selection might not be correct.
Selecting important variables and estimating coordinate covariation have received considerable attention in the current big data deluge. Previous work shows that the gradient of the regression function, the objective function in regression and classification problems, can provide both types of information. In this paper, an algorithm to learn this gradient function is proposed for nonidentical data. Under some mild assumptions on data distribution and the model parameters, a result on its learning rate is established which provides a theoretical guarantee for using this method in dynamical gene selection and in network security for recognition of malicious online attacks.
In recent years, balanced network optimization problems play an important role in practice, especially in information transmission, industry production and logistics management. In this paper, we consider some logistics optimization problems related to the optimal tree structures in a network. We show that the most optimal subtree problem is NP-hard by transforming the connected dominating set problem into this model. By constructing the network models of the most balanced spanning tree problem with edge set restrictions, and by finding the optimal subtrees in special networks, we present efficient computational methods for solving some logistics problems.
The error of a distributed algorithm for big data classification with a support vector machine (SVM) is analysed in this paper. First, the given big data sets are divided into small subsets, on which the classical SVM with Gaussian kernels is used. Then, the classification error of the SVM for each subset is analysed based on the Tsybakov exponent, geometric noise, and width of the Gaussian kernels. Finally, the whole error of the distributed algorithm is estimated in terms of the error of each subset.
The central projection transform can be employed to extract invariant features by combining contour-based and region-based methods. However, the central projection transform only considers the accumulation of the pixels along the radial direction. Consequently, information along the radial direction is inevitably lost. In this paper, we propose the Mellin central projection transform to extract affine invariant features. The radial factor introduced by the Mellin transform, makes up for the loss of information along the radial direction by the central projection transform. The Mellin central projection transform can convert any object into a closed curve as a central projection transform, so the central projection transform is only a special case of the Mellin central projection transform. We prove that closed curves extracted from the original image and the affine transformed image by the Mellin central projection transform satisfy the same affine transform relationship. A method is provided for the extraction of affine invariants by employing the area of closed curves derived by the Mellin central projection transform. Experiments have been conducted on some printed Chinese characters and the results establish the invariance and robustness of the extracted features.
We solve the problem of concept learning using a semi-tensor product method. All possible hypotheses are expressed under the framework of a semi-tensor product. An algorithm is raised to derive the version space. In some cases, the new approach improves the efficiency compared to the previous approach.
We investigate rare or small probability events in the context of large deviations of the stochastic Camassa–Holm equation. By the weak convergence approach and regularization, we get large deviations of the regularized equation. Then, by stochastic equations exponentially equivalent to the corresponding laws, we get large deviations of the stochastic Camassa–Holm equation.
We study the existence of the invariant region for the equations of nonisentropic gas dynamics. We obtain the mean-integral of the conserved quantity after making an intensive study of the Riemann problem. Using the extremum principle and the Lagrangian multiplier method, we prove that the one-dimensional equations of nonisentropic gas dynamics for an ideal gas possess a unique invariant region. However, the invariant region is not bounded.
We discuss discrete stochastic processes with two independent variables: one is the standard symmetric random walk, and the other is the Poisson process. Convergence of discrete stochastic processes is analysed, such that the symmetric random walk tends to the standard Brownian motion. We show that a discrete analogue of Ito’s formula converges to the corresponding continuous formula.
This paper analyses the pseudo almost periodicity of the impulsive neoclassical growth model. We investigate the existence, uniqueness and exponential stability of the pseudo almost periodic solution. Moreover, an example is given to illustrate the significance of the main findings.
We analyse a nonlinear hierarchical size-structured population model with time-dependent individual vital rates. The existence and uniqueness of nonnegative solutions to the model are shown via a comparison principle. Our investigation extends some results in the literature.
This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations (VIEs), ranging from Volterra's fundamental contributions and the resulting classical theory to more recent developments that include Volterra functional integral equations with various kinds of delays, VIEs with highly oscillatory kernels, and VIEs with non-compact operators. It will act as a 'stepping stone' to the literature on the advanced theory of VIEs, bringing the reader to the current state of the art in the theory. Each chapter contains a large number of exercises, extending from routine problems illustrating or complementing the theory to challenging open research problems. The increasingly important role of VIEs in the mathematical modelling of phenomena where memory effects play a key role is illustrated with some 30 concrete examples, and the notes at the end of each chapter feature complementary references as a guide to further reading.