To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We classify the nilpotent orbits in a simple Lie algebra for which the restriction of the adjoint quotient map to a Slodowy slice is the universal Poisson deformation of its central fibre. This generalises work of Brieskorn and Slodowy on subregular orbits. In particular, we find in this way new singular symplectic hypersurfaces of dimension four and six.
Let X be a smooth projective variety of dimension n in Pr, and let π:X→Pn+c be a general linear projection, with c>0. In this paper we bound the scheme-theoretic complexity of the fibers of π. In his famous work on stable mappings, Mather extended the classical results by showing that the number of distinct points in the fiber is bounded by B:=n/c+1, and that, when n is not too large, the degree of the fiber (taking the scheme structure into account) is also bounded by B. A result of Lazarsfeld shows that this fails dramatically for n≫0. We describe a new invariant of the scheme-theoretic fiber that agrees with the degree in many cases and is always bounded by B. We deduce, for example, that if we write a fiber as the disjoint union of schemes Y′ and Y′′ such that Y′ is the union of the locally complete intersection components of Y, then deg Y′+deg Y′′red≤B. Our method also gives a sharp bound on the subvariety of Pr swept out by the l-secant lines of X for any positive integer l, and we discuss a corresponding bound for highly secant linear spaces of higher dimension. These results extend Ran’s ‘dimension +2 secant lemma’.
We study linear functions on fibrations whose central fibre is a linear free divisor. We analyse the Gauß–Manin system associated to these functions, and prove the existence of a primitive and homogenous form. As a consequence, we show that the base space of the semi-universal unfolding of such a function carries a Frobenius manifold structure.
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being ℚ-Gorenstein or the pair being log ℚ-Gorenstein. The main features of the theory extend to this setting in a natural way.
In this paper we prove that most ropes of arbitrary multiplicity supported on smooth curves can be smoothed. By a rope being smoothable we mean that the rope is the flat limit of a family of smooth, irreducible curves. To construct a smoothing, we connect, on the one hand, deformations of a finite morphism to projective space and, on the other hand, morphisms from a rope to projective space. We also prove a general result of independent interest, namely that finite covers onto smooth irreducible curves embedded in projective space can be deformed to a family of 1:1 maps. We apply our general theory to prove the smoothing of ropes of multiplicity 3 on P1. Even though this paper focuses on ropes of dimension 1, our method yields a general approach to deal with the smoothing of ropes of higher dimension.
For each non-negative integer n we define the nth Nash blowup of an algebraic variety, and call them all higher Nash blowups. When n=1, it coincides with the classical Nash blowup. We study higher Nash blowups of curves in detail and prove that any curve in characteristic zero can be desingularized by its nth Nash blowup with n large enough. Moreover, we completely determine for which n the nth Nash blowup of an analytically irreducible curve singularity in characteristic zero is normal, in terms of the associated numerical monoid.
Let M and N be finitely generated and graded modules over a standard positive graded commutative Noetherian ring R, with irrelevant ideal R+. Let be the nth component of the graded generalized local cohomology module . In this paper we study the asymptotic behavior of Assf R+ () as n → –∞ whenever k is the least integer j for which the ordinary local cohomology module is not finitely generated.
Here we study the dimension δ(m, X) of the general fibers of the m-Gaussian map of a singular n-dimensional variety X ⊂ Pn. We show that for all integers a, b, c, d with n ≦ a < b ≦ c < d ≦ N − 1 and a + d = b + c we have δ (a, X) + δ(d, X) > δ(b, X) + δ(c, X). If δ(X, N − 1) is very large we give some classification results which extend to the singular case some results of Ein.