To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a pair consisting of a smooth 3-fold defined over an algebraically closed field and a “general” ${\Bbb R}$-ideal. We show that the minimal log discrepancy (“mld” for short) of every such a pair is computed by a prime divisor obtained by at most two weighted blow-ups. This bound is regarded as a weighted blow-up version of Mustaţă–Nakamura’s conjecture. We also show that if the mld of such a pair is not less than 1, then it is computed by at most one weighted blow-up. As a consequence, ACC of mld holds for such pairs.
We give a variant of Artin algebraization along closed subschemes and closed substacks. Our main application is the existence of étale, smooth or syntomic neighborhoods of closed subschemes and closed substacks. In particular, we prove local structure theorems for stacks and their derived counterparts and the existence of henselizations along linearly fundamental closed substacks. These results establish the existence of Ferrand pushouts, which answers positively a question of Temkin–Tyomkin.
We characterize the finite codimension sub-${\mathbf {k}}$-algebras of ${\mathbf {k}}[\![t]\!]$ as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension ${\mathbf {k}}$-vector spaces of ${\mathbf {k}}[u]$, this ring acts on ${\mathbf {k}}[\![t]\!]$ by differentiation.
In this article, we establish the Grothendieck–Serre conjecture over valuation rings: for a reductive group scheme $G$ over a valuation ring $V$ with fraction field $K$, a $G$-torsor over $V$ is trivial if it is trivial over $K$. This result is predicted by the original Grothendieck–Serre conjecture and the resolution of singularities. The novelty of our proof lies in overcoming subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélène–Sansuc's case of tori. Then, taking advantage of techniques in algebraization, we obtain the passage to the Henselian rank-one case. Finally, we induct on Levi subgroups and use the integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case, in which we appeal to properties of parahoric subgroups in Bruhat–Tits theory to conclude. In the last section, by using extension properties of reflexive sheaves on formal power series over valuation rings and patching of torsors, we prove a variant of Nisnevich's purity conjecture.
Valuation rings and perfectoid rings are examples of (usually non-Noetherian) rings that behave in some sense like regular rings. We give and study an extension of the concept of regular local rings to non-Noetherian rings so that it includes valuation and perfectoid rings and it is related to Grothendieck’s definition of formal smoothness as in the Noetherian case. For that, we have to take into account the topologies. We prove a descent theorem for regularity along flat homomorphisms (in fact for homomorphisms of finite flat dimension), extending some known results from the Noetherian to the non-Noetherian case, as well as generalizing some recent results in the non-Noetherian case, such as the descent of regularity from perfectoid rings by B. Bhatt, S. Iyengar and L. Ma.
Let $f_0$ and $f_1$ be two homogeneous polynomials of degree d in three complex variables $z_1,z_2,z_3$. We show that the Lê–Yomdin surface singularities defined by $g_0:=f_0+z_i^{d+m}$ and $g_1:=f_1+z_i^{d+m}$ have the same abstract topology, the same monodromy zeta-function, the same $\mu ^*$-invariant, but lie in distinct path-connected components of the $\mu ^*$-constant stratum if their projective tangent cones (defined by $f_0$ and $f_1$, respectively) make a Zariski pair of curves in $\mathbb {P}^2$, the singularities of which are Newton non-degenerate. In this case, we say that $V(g_0):=g_0^{-1}(0)$ and $V(g_1):=g_1^{-1}(0)$ make a $\mu ^*$-Zariski pair of surface singularities. Being such a pair is a necessary condition for the germs $V(g_0)$ and $V(g_1)$ to have distinct embedded topologies.
We consider a corank 1, finitely determined, quasi-homogeneous map germ f from $(\mathbb{C}^2,0)$ to $(\mathbb{C}^3,0)$. We describe the embedded topological type of a generic hyperplane section of $f(\mathbb{C}^2)$, denoted by $\gamma_f$, in terms of the weights and degrees of f. As a consequence, a necessary condition for a corank 1 finitely determined map germ $g\,{:}\,(\mathbb{C}^2,0)\rightarrow (\mathbb{C}^3,0)$ to be quasi-homogeneous is that the plane curve $\gamma_g$ has either two or three characteristic exponents. As an application of our main result, we also show that any one-parameter unfolding $F=(f_t,t)$ of f which adds only terms of the same degrees as the degrees of f is Whitney equisingular.
Consider a reductive linear algebraic group G acting linearly on a polynomial ring S over an infinite field; key examples are the general linear group, the symplectic group, the orthogonal group, and the special linear group, with the classical representations as in Weyl’s book: For the general linear group, consider a direct sum of copies of the standard representation and copies of the dual; in the other cases, take copies of the standard representation. The invariant rings in the respective cases are determinantal rings, rings defined by Pfaffians of alternating matrices, symmetric determinantal rings and the Plücker coordinate rings of Grassmannians; these are the classical invariant rings of the title, with $S^G\subseteq S$ being the natural embedding.
Over a field of characteristic zero, a reductive group is linearly reductive, and it follows that the invariant ring $S^G$ is a pure subring of S, equivalently, $S^G$ is a direct summand of S as an $S^G$-module. Over fields of positive characteristic, reductive groups are typically no longer linearly reductive. We determine, in the positive characteristic case, precisely when the inclusion $S^G\subseteq S$ is pure. It turns out that if $S^G\subseteq S$ is pure, then either the invariant ring $S^G$ is regular or the group G is linearly reductive.
Given a resolution of rational singularities $\pi \colon {\tilde {X}} \to X$ over a field of characteristic zero, we use a Hodge-theoretic argument to prove that the image of the functor ${\mathbf {R}}\pi _*\colon {\mathbf {D}}^{\mathrm {b}}({\tilde {X}}) \to {\mathbf {D}}^{\mathrm {b}}(X)$ between bounded derived categories of coherent sheaves generates ${\mathbf {D}}^{\mathrm {b}}(X)$ as a triangulated category. This gives a weak version of the Bondal–Orlov localization conjecture [BO02], answering a question from [PS21]. The same result is established more generally for proper (not necessarily birational) morphisms $\pi \colon {\tilde {X}} \to X$, with ${\tilde {X}}$ smooth, satisfying ${\mathbf {R}}\pi _*({\mathcal {O}}_{\tilde {X}}) = {\mathcal {O}}_X$.
Let f be an isolated singularity at the origin of $\mathbb {C}^n$. One of many invariants that can be associated with f is its Łojasiewicz exponent $\mathcal {L}_0 (f)$, which measures, to some extent, the topology of f. We give, for generic surface singularities f, an effective formula for $\mathcal {L}_0 (f)$ in terms of the Newton polyhedron of f. This is a realization of one of Arnold’s postulates.
In this paper, we prove that klt singularities are invariant under deformations if the generic fiber is $\mathbb {Q}$-Gorenstein. We also obtain a similar result for slc singularities. These are generalizations of results of Esnault-Viehweg [Math. Ann.271 (1985), 439–449] and S. Ishii [Math. Ann.275 (1986), 139–148; Singularities (Iowa City, IA, 1986) Contemporary Mathematics, vol. 90 (American Mathematical Society, Providence, RI, 1989), 135–145].
Let $ {\mathcal C} $ be an algebraic curve and c be an analytically irreducible singular point of ${\mathcal C}$. The set ${\mathscr {L}_{\infty }}({\mathcal C})^c$ of arcs with origin c is an irreducible closed subset of the space of arcs on ${\mathcal C}$. We obtain a presentation of the formal neighborhood of the generic point of this set which can be interpreted in terms of deformations of the generic arc defined by this point. This allows us to deduce a strong connection between the aforementioned formal neighborhood and the formal neighborhood in the arc space of any primitive parametrization of the singularity c. This may be interpreted as the fact that analytically along ${\mathscr {L}_{\infty }}({\mathcal C})^c$ the arc space is a product of a finite dimensional singularity and an infinite dimensional affine space.
Let $(X\ni x,B)$ be an lc surface germ. If $X\ni x$ is klt, we show that there exists a divisor computing the minimal log discrepancy of $(X\ni x,B)$ that is a Kollár component of $X\ni x$. If $B\not=0$ or $X\ni x$ is not Du Val, we show that any divisor computing the minimal log discrepancy of $(X\ni x,B)$ is a potential lc place of $X\ni x$. This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.
Using Cohen’s classification of symplectic reflection groups, we prove that the parabolic subgroups, that is, stabilizer subgroups, of a finite symplectic reflection group, are themselves symplectic reflection groups. This is the symplectic analog of Steinberg’s Theorem for complex reflection groups.
Using computational results required in the proof, we show the nonexistence of symplectic resolutions for symplectic quotient singularities corresponding to three exceptional symplectic reflection groups, thus reducing further the number of cases for which the existence question remains open.
Another immediate consequence of our result is that the singular locus of the symplectic quotient singularity associated to a symplectic reflection group is pure of codimension two.
Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert–Kunzmultiplicity.
Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra $\mathcal {B}(R)$ over a local domain R essentially of finite type over $\mathbb {C}$. We show that if R is normal and $\Delta $ is an effective $\mathbb {Q}$-Weil divisor on $\operatorname {Spec} R$ such that $K_R+\Delta $ is $\mathbb {Q}$-Cartier, then the BCM test ideal $\tau _{\widehat {\mathcal {B}(R)}}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$ with respect to $\widehat {\mathcal {B}(R)}$ coincides with the multiplier ideal $\mathcal {J}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$, where $\widehat {R}$ and $\widehat {\mathcal {B}(R)}$ are the $\mathfrak {m}$-adic completions of R and $\mathcal {B}(R)$, respectively, and $\widehat {\Delta }$ is the flat pullback of $\Delta $ by the canonical morphism $\operatorname {Spec} \widehat {R}\to \operatorname {Spec} R$. As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.
It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form $f=f^1\cdots f^{k_0}$ is uniquely determined by the Newton boundaries of $f^1,\ldots , f^{k_0}$ if $\{f^{k_1}=\cdots =f^{k_m}=0\}$ is a nondegenerate complete intersection variety for any $k_1,\ldots ,k_m\in \{1,\ldots , k_0\}$.
In this paper, we prove that a classical theorem by McAdam about the analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial filtrations on a two-dimensional normal excellent local ring R, and that the Hilbert polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which is the sum of a linear polynomial and a bounded function. We prove these theorems by first studying asymptotic properties of divisors on a resolution of singularities of the spectrum of R. The filtration of the symbolic powers of an ideal is an example of a divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant difference in the classical case of filtrations of powers of ideals and divisorial filtrations.
We study the symplectic leaves of the subvariety of fixed points of an automorphism of a Calogero–Moser space induced by an element of finite order of the normalizer of the associated complex reflection group. We give a parametrization à la Harish-Chandra of its symplectic leaves (generalizing earlier works of Bellamy and Losev). This result is inspired by the mysterious relations between the geometry of Calogero–Moser spaces and unipotent representations of finite reductive groups, which is the theme of another paper, C. Bonnafé [‘Calogero–Moser spaces vs unipotent representations’, Pure Appl. Math. Q., to appear, Preprint, 2021, arXiv:2112.13684].
We study the Hodge filtration on the local cohomology sheaves of a smooth complex algebraic variety along a closed subscheme Z in terms of log resolutions and derive applications regarding the local cohomological dimension, the Du Bois complex, local vanishing and reflexive differentials associated to Z.