$\mathbb{P}^5$
$\mathcal {M}_{1,n}$ for
$n=3,\dots ,10$
$J$-invariant over splitting fields of Tits algebras
$K3^{[n]}$ type are algebraic
$\chi $-dependence of ring structure for the moduli of one-dimensional sheaves on
$\mathbb {P}^2$