To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let C be a smooth projective curve of genus $2$. Following a method by O’Grady, we construct a semismall desingularisation $\tilde {\mathcal {M}}_{Dol}^G$ of the moduli space $\mathcal {M}_{Dol}^G$ of semistable G-Higgs bundles of degree 0 for $G=\mathrm {GL}(2,\mathbb {C}), \mathrm {SL}(2,\mathbb {C})$. By the decomposition theorem of Beilinson, Bernstein and Deligne, one can write the cohomology of $\tilde {\mathcal {M}}_{Dol}^G$ as a direct sum of the intersection cohomology of $\mathcal {M}_{Dol}^G$ plus other summands supported on the singular locus. We use this splitting to compute the intersection cohomology of $\mathcal {M}_{Dol}^G$ and prove that the mixed Hodge structure on it is pure, in analogy with what happens to ordinary cohomology in the smooth case of coprime rank and degree.
We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally unipotent degeneration of compact hyper-Kähler manifolds.
We consider Calabi–Yau n-folds X arising from certain hyperplane arrangements. Using Fu–Vial’s theory of distinguished cycles for varieties with motive of abelian type, we show that the subring of the Chow ring of X generated by divisors, Chern classes and intersections of subvarieties of positive codimension injects into cohomology. We also prove Voisin’s conjecture for X, and Voevodsky’s smash-nilpotence conjecture for odd-dimensional X.
Let $G$ be a split semisimple algebraic group over a field and let $A^*$ be an oriented cohomology theory in the Levine–Morel sense. We provide a uniform approach to the $A^*$-motives of geometrically cellular smooth projective $G$-varieties based on the Hopf algebra structure of $A^*(G)$. Using this approach, we provide various applications to the structure of motives of twisted flag varieties.
Given a compact Kähler manifold X, it is shown that pairs of the form $(E,\, D)$, where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
We prove an equivalence between the Bryan-Steinberg theory of $\pi $-stable pairs on $Y = \mathcal {A}_{m-1} \times \mathbb {C}$ and the theory of quasimaps to $X = \text{Hilb}(\mathcal {A}_{m-1})$, in the form of an equality of K-theoretic equivariant vertices. In particular, the combinatorics of both vertices are described explicitly via box counting. Then we apply the equivalence to study the implications for sheaf-counting theories on Y arising from 3D mirror symmetry for quasimaps to X, including the Donaldson-Thomas crepant resolution conjecture.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also prove, along the way, a result of independent interest, giving sufficient conditions for smoothness of the total space of the relative compactified Jacobian of a family of locally planar curves.
We consider a 10-dimensional family of Lehn–Lehn–Sorger–van Straten hyperkähler eightfolds, which have a non-symplectic automorphism of order 3. Using the theory of finite-dimensional motives, we show that the action of this automorphism on the Chow group of 0-cycles is as predicted by the Bloch–Beilinson conjectures. We prove a similar statement for the anti-symplectic involution on varieties in this family. This has interesting consequences for the intersection product of the Chow ring of these varieties.
We define a motivic conductor for any presheaf with transfers F using the categorical framework developed for the theory of motives with modulus by Kahn, Miyazaki, Saito and Yamazaki. If F is a reciprocity sheaf, this conductor yields an increasing and exhaustive filtration on $F(L)$, where L is any henselian discrete valuation field of geometric type over the perfect ground field. We show that if F is a smooth group scheme, then the motivic conductor extends the Rosenlicht–Serre conductor; if F assigns to X the group of finite characters on the abelianised étale fundamental group of X, then the motivic conductor agrees with the Artin conductor defined by Kato and Matsuda; and if F assigns to X the group of integrable rank $1$ connections (in characteristic $0$), then it agrees with the irregularity. We also show that this machinery gives rise to a conductor for torsors under finite flat group schemes over the base field, which we believe to be new. We introduce a general notion of conductors on presheaves with transfers and show that on a reciprocity sheaf, the motivic conductor is minimal and any conductor which is defined only for henselian discrete valuation fields of geometric type with perfect residue field can be uniquely extended to all such fields without any restriction on the residue field. For example, the Kato–Matsuda Artin conductor is characterised as the canonical extension of the classical Artin conductor defined in the case of a perfect residue field.
We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$, in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$-fold ${{\mathbb {A}}}^3$. We compute the associated partition function as a plethystic exponential, proving a conjecture proposed in string theory by Awata-Kanno and Benini-Bonelli-Poggi-Tanzini. A crucial step in the proof is the fact, nontrival if $r>1$, that the invariants do not depend on the equivariant parameters of the framing torus $({{\mathbb {C}}}^\ast )^r$. Reducing from K-theoretic to cohomological invariants, we compute the corresponding DT invariants, proving a conjecture of Szabo. Reducing further to enumerative DT invariants, we solve the higher rank DT theory of a pair $(X,F)$, where F is an equivariant exceptional locally free sheaf on a projective toric $3$-fold X.
As a further refinement of the K-theoretic DT invariants, we formulate a mathematical definition of the chiral elliptic genus studied in physics. This allows us to define elliptic DT invariants of ${{\mathbb {A}}}^3$ in arbitrary rank, which we use to tackle a conjecture of Benini-Bonelli-Poggi-Tanzini.
We construct examples of smooth proper rigid-analytic varieties admitting formal models with projective special fibers and violating Hodge symmetry for cohomology in degrees ${\geq }3$. This answers negatively the question raised by Hansen and Li.
We study log $\mathscr {D}$-modules on smooth log pairs and construct a comparison theorem of log de Rham complexes. The proof uses Sabbah’s generalized b-functions. As applications, we deduce a log index theorem and a Riemann-Roch type formula for perverse sheaves on smooth quasi-projective varieties. The log index theorem naturally generalizes the Dubson-Kashiwara index theorem on smooth projective varieties.
We investigate families of minimal rational curves on Schubert varieties, their Bott–Samelson desingularizations, and their generalizations constructed by Nicolas Perrin in the minuscule case. In particular, we describe the minimal families on small resolutions of minuscule Schubert varieties.
We introduce a weak Lefschetz-type result on Chow groups of complete intersections. As an application, we can reproduce some of the results in [P]. The purpose of this paper is not to reproduce all of [P] but rather illustrate why the aforementioned weak Lefschetz result is an interesting idea worth exploiting in itself. We hope the reader agrees.
In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of $\varepsilon $-stable quasimaps and $\varepsilon $-stable $LG$-quasimaps by studying localized Chern characters for $2$-periodic complexes.
In this paper, we study a K-theoretic analogue of the localized Chern character map and show that for a Koszul $2$-periodic complex it coincides with the cosection-localized Gysin map of Kiem and Li [11]. As an application, we compare the virtual structure sheaves of the moduli space of $\varepsilon $-stable quasimaps and $\varepsilon $-stable $LG$-quasimaps.
In this article we introduce the local versions of the Voevodsky category of motives with $\mathbb{F} _p$-coefficients over a field k, parametrized by finitely generated extensions of k. We introduce the so-called flexible fields, passage to which is conservative on motives. We demonstrate that, over flexible fields, the constructed local motivic categories are much simpler than the global one and more reminiscent of a topological counterpart. This provides handy ‘local’ invariants from which one can read motivic information. We compute the local motivic cohomology of a point for $p=2$ and study the local Chow motivic category. We introduce local Chow groups and conjecture that over flexible fields these should coincide with Chow groups modulo numerical equivalence with$\mathbb{F} _p$-coefficients, which implies that local Chow motives coincide with numerical Chow motives. We prove this conjecture in various cases.
Almost perfect obstruction theories were introduced in an earlier paper by the authors as the appropriate notion in order to define virtual structure sheaves and K-theoretic invariants for many moduli stacks of interest, including K-theoretic Donaldson-Thomas invariants of sheaves and complexes on Calabi-Yau threefolds. The construction of virtual structure sheaves is based on the K-theory and Gysin maps of sheaf stacks.
In this paper, we generalize the virtual torus localization and cosection localization formulas and their combination to the setting of almost perfect obstruction theory. To this end, we further investigate the K-theory of sheaf stacks and its functoriality properties. As applications of the localization formulas, we establish a K-theoretic wall-crossing formula for simple $\mathbb{C} ^\ast $-wall crossings and define K-theoretic invariants refining the Jiang-Thomas virtual signed Euler characteristics.
Let $K/F$ be an unramified quadratic extension of a non-Archimedean local field. In a previous work [1], we proved a formula for the intersection number on Lubin–Tate spaces. The main result of this article is an algorithm for computation of this formula in certain special cases. As an application, we prove the linear Arithmetic Fundamental Lemma for $ \operatorname {{\mathrm {GL}}}_4$ with the unit element in the spherical Hecke Algebra.
We show that if X is a smooth complex projective surface with torsion-free cohomology, then the Hilbert scheme $X^{[n]}$ has torsion-free cohomology for every natural number n. This extends earlier work by Markman on the case of Poisson surfaces. The proof uses Gholampour-Thomas’s reduced obstruction theory for nested Hilbert schemes of surfaces.