We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we construct Chern classes from the relative $K$-theory of modulus pairs to the relative motivic cohomology defined by Binda–Saito. An application to relative motivic cohomology of henselian dvr is given.
The aim of this paper is to construct Calabi–Yau 4-folds as crepant resolutions of the quotients of a hyperkähler 4-fold $X$ by a non-symplectic involution $\unicode[STIX]{x1D6FC}$. We first compute the Hodge numbers of a Calabi–Yau constructed in this way in a general setting, and then we apply the results to several specific examples of non-symplectic involutions, producing Calabi–Yau 4-folds with different Hodge diamonds. Then we restrict ourselves to the case where $X$ is the Hilbert scheme of two points on a K3 surface $S$, and the involution $\unicode[STIX]{x1D6FC}$ is induced by a non-symplectic involution on the K3 surface. In this case we compare the Calabi–Yau 4-fold $Y_{S}$, which is the crepant resolution of $X/\unicode[STIX]{x1D6FC}$, with the Calabi–Yau 4-fold $Z_{S}$, constructed from $S$ through the Borcea–Voisin construction. We give several explicit geometrical examples of both these Calabi–Yau 4-folds, describing maps related to interesting linear systems as well as a rational $2:1$ map from $Z_{S}$ to $Y_{S}$.
We exhibit invariants of smooth projective algebraic varieties with integer values, whose nonvanishing modulo $p$ prevents the existence of an action without fixed points of certain finite $p$-groups. The case of base fields of characteristic $p$ is included. Counterexamples are systematically provided to test the sharpness of our results.
We give a bound on the H-constants of configurations of smooth curves having transversal intersection points only on an algebraic surface of non-negative Kodaira dimension. We also study in detail configurations of lines on smooth complete intersections $X \subset \mathbb{P}_{\mathbb{C}}^{n + 2}$ of multi-degree d = (d1, …, dn), and we provide a sharp and uniform bound on their H-constants, which only depends on d.
The main aim of this paper is to show that a cyclic cover of ℙn branched along a very general divisor of degree d is not stably rational, provided that n ≥ 3 and d ≥ n + 1. This generalizes the result of Colliot-Thélène and Pirutka. Generalizations for cyclic covers over complete intersections and applications to suitable Fano manifolds are also discussed.
We bring examples of toric varieties blown up at a point in the torus that do not have finitely generated Cox rings. These examples are generalizations of our earlier work, where toric surfaces of Picard number 1 were studied. In this article we consider toric varieties of higher Picard number and higher dimension. In particular, we bring examples of weighted projective 3-spaces blown up at a point that do not have finitely generated Cox rings.
An intrinsic quadric is a normal projective variety with a Cox ring defined by a single quadratic relation. We provide explicit descriptions of these varieties in the smooth case for small Picard numbers. As applications, we figure out in this setting the Fano examples and (affirmatively) test Fujita’s freeness conjecture.
According to a well-known theorem of Serre and Tate, the infinitesimal deformation theory of an abelian variety in positive characteristic is equivalent to the infinitesimal deformation theory of its Barsotti–Tate group. We extend this result to 1-motives.
This paper contains two results on Hodge loci in $\mathsf{M}_{g}$. The first concerns fibrations over curves with a non-trivial flat part in the Fujita decomposition. If local Torelli theorem holds for the fibers and the fibration is non-trivial, an appropriate exterior power of the cohomology of the fiber admits a Hodge substructure. In the case of curves it follows that the moduli image of the fiber is contained in a proper Hodge locus. The second result deals with divisors in $\mathsf{M}_{g}$. It is proved that the image under the period map of a divisor in $\mathsf{M}_{g}$ is not contained in a proper totally geodesic subvariety of $\mathsf{A}_{g}$. It follows that a Hodge locus in $\mathsf{M}_{g}$ has codimension at least 2.
We explore the connection between $K3$ categories and 0-cycles on holomorphic symplectic varieties. In this paper, we focus on Kuznetsov’s noncommutative $K3$ category associated to a nonsingular cubic 4-fold.
By introducing a filtration on the $\text{CH}_{1}$-group of a cubic 4-fold $Y$, we conjecture a sheaf/cycle correspondence for the associated $K3$ category ${\mathcal{A}}_{Y}$. This is a noncommutative analog of O’Grady’s conjecture concerning derived categories of $K3$ surfaces. We study instances of our conjecture involving rational curves in cubic 4-folds, and verify the conjecture for sheaves supported on low degree rational curves.
Our method provides systematic constructions of (a) the Beauville–Voisin filtration on the $\text{CH}_{0}$-group and (b) algebraically coisotropic subvarieties of a holomorphic symplectic variety which is a moduli space of stable objects in ${\mathcal{A}}_{Y}$.
The motivic Hilbert zeta function of a variety $X$ is the generating function for classes in the Grothendieck ring of varieties of Hilbert schemes of points on $X$. In this paper, the motivic Hilbert zeta function of a reduced curve is shown to be rational.
We produce an isomorphism $E_{\infty }^{m,-m-1}\cong \text{Nrd}_{1}(A^{\otimes m})$ between terms of the $\text{K}$-theory coniveau spectral sequence of a Severi–Brauer variety $X$ associated with a central simple algebra $A$ and a reduced norm group, assuming $A$ has equal index and exponent over all finite extensions of its center and that $\text{SK}_{1}(A^{\otimes i})=1$ for all $i>0$.
We study a wide class of affine varieties, which we call affine Fano varieties. By analogy with birationally super-rigid Fano varieties, we define super-rigidity for affine Fano varieties, and provide many examples and non-examples of super-rigid affine Fano varieties.
In this paper, we construct surfaces in $\mathbf{P}^{3}$ with large higher Chow groups defined over a Laurent power series field. Explicit elements in higher Chow group are constructed using configurations of lines contained in the surfaces. To prove the independentness, we compute the extension class in the Galois cohomologies by comparing them with the classical monodromies. It is reduced to the computation of linear algebra using monodromy weight spectral sequences.
We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.
We study the decompositions of Hilbert schemes induced by the Schubert cell decomposition of the Grassmannian variety and show that Hilbert schemes admit a stratification into locally closed subschemes along which the generic initial ideals remain the same. We give two applications. First, we give completely geometric proofs of the existence of the generic initial ideals and of their Borel fixed properties. Second, we prove that when a Hilbert scheme of non-constant Hilbert polynomial is embedded by the Grothendieck–Plücker embedding of a high enough degree, it must be degenerate.
Let $Y$ be a compact complex manifold embedded in a complex manifold with unitary flat normal bundle. Our interest is in a sort of the linearizability problem of a neighborhood of $Y$. As a higher codimensional generalization of Ueda’s result, we give a sufficient condition for the existence of a nonsingular holomorphic foliation on a neighborhood of $Y$ which includes $Y$ as a leaf with unitary-linear holonomy. We apply this result to the existence problem of a smooth Hermitian metric with semipositive curvature on a nef line bundle.
We show that the image of the Abel–Jacobi map admits functorially a model over the field of definition, with the property that the Abel–Jacobi map is equivariant with respect to this model. The cohomology of this abelian variety over the base field is isomorphic as a Galois representation to the deepest part of the coniveau filtration of the cohomology of the projective variety. Moreover, we show that this model over the base field is dominated by the Albanese variety of a product of components of the Hilbert scheme of the projective variety, and thus we answer a question of Mazur. We also recover a result of Deligne on complete intersections of Hodge level 1.
In this paper we construct a $\mathbb{Q}$-linear tannakian category $\mathsf{MEM}_{1}$ of universal mixed elliptic motives over the moduli space ${\mathcal{M}}_{1,1}$ of elliptic curves. It contains $\mathsf{MTM}$, the category of mixed Tate motives unramified over the integers. Each object of $\mathsf{MEM}_{1}$ is an object of $\mathsf{MTM}$ endowed with an action of $\text{SL}_{2}(\mathbb{Z})$ that is compatible with its structure. Universal mixed elliptic motives can be thought of as motivic local systems over ${\mathcal{M}}_{1,1}$ whose fiber over the tangential base point $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}q$ at the cusp is a mixed Tate motive. The basic structure of the tannakian fundamental group of $\mathsf{MEM}$ is determined and the lowest order terms of a set (conjecturally, a minimal generating set) of relations are deduced from computations of Brown. This set of relations includes the arithmetic relations, which describe the ‘infinitesimal Galois action’. We use the presentation to give a new and more conceptual proof of the Ihara–Takao congruences.
We compute the Alexander polynomial of a nonreduced nonirreducible complex projective plane curve with mutually coprime orders of vanishing along its irreducible components in terms of certain multiplier ideals.