To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a version of Clifford’s theorem for metrized complexes. Namely, a metrized complex that carries a divisor of degree $2r$ and rank $r$ (for $0<r<g-1$) also carries a divisor of degree 2 and rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify divisors of degree bounded by the genus. We discuss a tropical version of Martens’ theorem for metric graphs.
We prove that the standard motives of a semisimple algebraic group $G$ with coefficients in a field of order $p$ are determined by the upper motives of the group $G$. As a consequence of this result, we obtain a partial version of the motivic rigidity conjecture of special linear groups. The result is then used to construct the higher indexes which characterize the motivic equivalence of semisimple algebraic groups. The criteria of motivic equivalence derived from the expressions of these indexes produce a dictionary between motives, algebraic structures and the birational geometry of twisted flag varieties. This correspondence is then described for special linear groups and orthogonal groups (the criteria associated with other groups being obtained in De Clercq and Garibaldi [Tits$p$-indexes of semisimple algebraic groups, J. Lond. Math. Soc. (2) 95 (2017) 567–585]). The proofs rely on the Levi-type motivic decompositions of isotropic twisted flag varieties due to Chernousov, Gille and Merkurjev, and on the notion of pondered field extensions.
Using the descent spectral sequence for a Galois extension of ring spectra, we compute the Picard group of the higher real $K$-theory spectra of Hopkins and Miller at height $n=p-1$, for $p$ an odd prime. More generally, we determine the Picard groups of the homotopy fixed points spectra $E_{n}^{hG}$, where $E_{n}$ is Lubin–Tate $E$-theory at the prime $p$ and height $n=p-1$, and $G$ is any finite subgroup of the extended Morava stabilizer group. We find that these Picard groups are always cyclic, generated by the suspension.
Let $M$ be an irreducible holomorphic symplectic (hyperkähler) manifold. If $b_{2}(M)\geqslant 5$, we construct a deformation $M^{\prime }$ of $M$ which admits a symplectic automorphism of infinite order. This automorphism is hyperbolic, that is, its action on the space of real $(1,1)$-classes is hyperbolic. If $b_{2}(M)\geqslant 14$, similarly, we construct a deformation which admits a parabolic automorphism (and many other automorphisms as well).
In this paper, motivated by a problem posed by Barry Mazur, we show that for smooth projective varieties over the rationals, the odd cohomology groups of degree less than or equal to the dimension can be modeled by the cohomology of an abelian variety, provided the geometric coniveau is maximal. This provides an affirmative answer to Mazur’s question for all uni-ruled threefolds, for instance. Concerning cohomology in degree three, we show that the image of the Abel–Jacobi map admits a distinguished model over the rationals.
Voevodsky has conjectured that numerical equivalence and smash-equivalence coincide for algebraic cycles on any smooth projective variety. Building on work of Vial and Kahn–Sebastian, we give some new examples of varieties where Voevodsky's conjecture is verified.
We give a new characterization, in the equicharacteristic case, of Teter rings by using Macaulay inverse systems. We extend the previous characterizations due to Teter, to Huneke and Vraciu and to Ananthnarayan et al., to any characteristic of the ground field and remove the hypothesis on the socle ideal. We construct and describe the variety parametrizing Teter covers and we show how to check if an Artin ring is Teter. If this is the case, we show how to compute a Teter cover.
For every integer $k\geqslant 3$ we construct a $k$-gonal curve $C$ along with a very ample divisor of degree $2g+k-1$ (where $g$ is the genus of $C$) to which the vanishing statement from the Green–Lazarsfeld gonality conjecture does not apply.
We obtain an algorithm computing the Chern–Schwartz–MacPherson (CSM) classes of Schubert cells in a generalized flag manifold $G/B$. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure–Lusztig-type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of $G/B$. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold $G/P$. We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjecture to the torus equivariant setting.
We introduce techniques of Suslin, Voevodsky, and others into the study of singular varieties. Our approach is modeled after Goresky–MacPherson intersection homology. We provide a formulation of perversity cycle spaces leading to perversity homology theory and a companion perversity cohomology theory based on generalized cocycle spaces. These theories lead to conditions on pairs of cycles which can be intersected and a suitable equivalence relation on cocycles/cycles enabling pairings on equivalence classes. We establish suspension and splitting theorems, as well as a localization property. Some examples of intersections on singular varieties are computed.
The Hilbert scheme $X^{[3]}$ of length-3 subschemes of a smooth projective variety $X$ is known to be smooth and projective. We investigate whether the property of having a multiplicative Chow–Künneth decomposition is stable under taking the Hilbert cube. This is achieved by considering an explicit resolution of the rational map $X^{3}{\dashrightarrow}X^{[3]}$. The case of the Hilbert square was taken care of in Shen and Vial [Mem. Amer. Math. Soc.240(1139) (2016), vii+163 pp]. The archetypical examples of varieties endowed with a multiplicative Chow–Künneth decomposition is given by abelian varieties. Recent work seems to suggest that hyperKähler varieties share the same property. Roughly, if a smooth projective variety $X$ has a multiplicative Chow–Künneth decomposition, then the Chow rings of its powers $X^{n}$ have a filtration, which is the expected Bloch–Beilinson filtration, that is split.
In this paper, we exhibit explicit automorphisms of maximal Salem degree 22 on the supersingular K3 surface of Artin invariant one for all primes $p\equiv 3~\text{mod}\,4$ in a systematic way. Automorphisms of Salem degree 22 do not lift to any characteristic zero model.
In this paper, we investigate the mixed Hodge structures of the moduli space of $\boldsymbol{\unicode[STIX]{x1D6FC}}$-stable parabolic Higgs bundles and the moduli space of $\boldsymbol{\unicode[STIX]{x1D6FC}}$-stable regular singular parabolic connections. We show that the mixed Hodge polynomials are independent of the choice of generic eigenvalues and the mixed Hodge structures of these moduli spaces are pure. Moreover, by the Riemann–Hilbert correspondence, the Poincaré polynomials of character varieties are independent of the choice of generic eigenvalues.
The paper studies a relation between fundamental group of the complement to a plane singular curve and the orbifold pencils containing it. The main tool is the use of Albanese varieties of cyclic covers ramified along such curves. Our results give sufficient conditions for a plane singular curve to belong to an orbifold pencil, that is, a pencil of plane curves with multiple fibers inducing a map onto an orbifold curve whose orbifold fundamental group is nontrivial. We construct an example of a cyclic cover of the projective plane which is an abelian surface isomorphic to the Jacobian of a curve of genus 2 illustrating the extent to which these conditions are necessary.
We prove that the tautological ring of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$, the moduli space of $n$-pointed genus two curves of compact type, does not have Poincaré duality for any $n\geqslant 8$. This result is obtained via a more general study of the cohomology groups of ${\mathcal{M}}_{2,n}^{\mathsf{ct}}$. We explain how the cohomology can be decomposed into pieces corresponding to different local systems and how the tautological cohomology can be identified within this decomposition. Our results allow the computation of $H^{k}({\mathcal{M}}_{2,n}^{\mathsf{ct}})$ for any $k$ and $n$ considered both as $\mathbb{S}_{n}$-representation and as mixed Hodge structure/$\ell$-adic Galois representation considered up to semi-simplification. A consequence of our results is also that all even cohomology of $\overline{{\mathcal{M}}}_{2,n}$ is tautological for $n<20$, and that the tautological ring of $\overline{{\mathcal{M}}}_{2,n}$ fails to have Poincaré duality for all $n\geqslant 20$. This improves and simplifies results of the author and Orsola Tommasi.
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
The Hilbert scheme $X^{[a]}$ of points on a complex manifold $X$ is a compactification of the configuration space of $a$-element subsets of $X$. The integral cohomology of $X^{[a]}$ is more subtle than the rational cohomology. In this paper, we compute the mod 2 cohomology of $X^{[2]}$ for any complex manifold $X$, and the integral cohomology of $X^{[2]}$ when $X$ has torsion-free cohomology.
For each del Pezzo surface $S$ with du Val singularities, we determine whether it admits a $(-K_{S})$-polar cylinder or not. If it allows one, then we present an effective $\mathbb{Q}$-divisor $D$ that is $\mathbb{Q}$-linearly equivalent to $-K_{S}$ and such that the open set $S\setminus \text{Supp}(D)$ is a cylinder. As a corollary, we classify all the del Pezzo surfaces with du Val singularities that admit non-trivial $\mathbb{G}_{a}$-actions on their affine cones defined by their anticanonical divisors.
We show that the subcategory of mixed Tate motives in Voevodsky’s derived category of motives is not closed under infinite products. In fact, the infinite product $\prod _{n=1}^{\infty }\mathbf{Q}(0)$ is not mixed Tate. More generally, the inclusions of several subcategories of motives do not have left or right adjoints. The proofs use the failure of finite generation for Chow groups in various contexts. In the positive direction, we show that for any scheme of finite type over a field whose motive is mixed Tate, the Chow groups are finitely generated.
The main aim of this paper is to classify Ulrich ideals and Ulrich modules over two-dimensional Gorenstein rational singularities (rational double points) from a geometric point of view. To achieve this purpose, we introduce the notion of (weakly) special Cohen–Macaulay modules with respect to ideals, and study the relationship between those modules and Ulrich modules with respect to good ideals.