We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The space of n distinct points and adisjoint parametrized hyperplane in projective d-space up to projectivity – equivalently, configurations of n distinct points in affine d-space up to translation and homothety – has a beautiful compactification introduced by Chen, Gibney and Krashen. This variety, constructed inductively using the apparatus of Fulton–MacPherson configuration spaces, is a parameter space of certain pointed rational varieties whose dual intersection complex is a rooted tree. This generalizes $\overline M _{0,n}$ and shares many properties with it. In this paper, we prove that the normalization of the Chow quotient of (ℙd)n by the diagonal action of the subgroup of projectivities fixing a hyperplane, pointwise, is isomorphic to this Chen–Gibney–Krashen space Td, n. This is a non-reductive analogue of Kapranov's famous quotient construction of $\overline M _{0,n}$, and indeed as a special case we show that $\overline M _{0,n}$ is the Chow quotient of (ℙ1)n−1 by an action of 𝔾m ⋊ 𝔾a.
We prove a bound relating the volume of a curve near a cusp in a complex ball quotient $X=\mathbb{B}/\unicode[STIX]{x1D6E4}$ to its multiplicity at the cusp. There are a number of consequences: we show that for an $n$-dimensional toroidal compactification $\overline{X}$ with boundary $D$, $K_{\overline{X}}+(1-\unicode[STIX]{x1D706})D$ is ample for $\unicode[STIX]{x1D706}\in (0,(n+1)/2\unicode[STIX]{x1D70B})$, and in particular that $K_{\overline{X}}$ is ample for $n\geqslant 6$. By an independent algebraic argument, we prove that every ball quotient of dimension $n\geqslant 4$ is of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in dimension 2 does not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green–Griffiths conjecture.
Let $\overline{X}$ be a separated scheme of finite type over a field $k$ and $D$ a non-reduced effective Cartier divisor on it. We attach to the pair $(\overline{X},D)$ a cycle complex with modulus, those homotopy groups – called higher Chow groups with modulus – generalize additive higher Chow groups of Bloch–Esnault, Rülling, Park and Krishna–Levine, and that sheafified on $\overline{X}_{\text{Zar}}$ gives a candidate definition for a relative motivic complex of the pair, that we compute in weight $1$. When $\overline{X}$ is smooth over $k$ and $D$ is such that $D_{\text{red}}$ is a normal crossing divisor, we construct a fundamental class in the cohomology of relative differentials for a cycle satisfying the modulus condition, refining El Zein’s explicit construction of the fundamental class of a cycle. This is used to define a natural regulator map from the relative motivic complex of $(\overline{X},D)$ to the relative de Rham complex. When $\overline{X}$ is defined over $\mathbb{C}$, the same method leads to the construction of a regulator map to a relative version of Deligne cohomology, generalizing Bloch’s regulator from higher Chow groups. Finally, when $\overline{X}$ is moreover connected and proper over $\mathbb{C}$, we use relative Deligne cohomology to define relative intermediate Jacobians with modulus $J_{\overline{X}|D}^{r}$ of the pair $(\overline{X},D)$. For $r=\dim \overline{X}$, we show that $J_{\overline{X}|D}^{r}$ is the universal regular quotient of the Chow group of $0$-cycles with modulus.
Given a smooth variety $X$ and an effective Cartier divisor $D\subset X$, we show that the cohomological Chow group of 0-cycles on the double of $X$ along $D$ has a canonical decomposition in terms of the Chow group of 0-cycles $\text{CH}_{0}(X)$ and the Chow group of 0-cycles with modulus $\text{CH}_{0}(X|D)$ on $X$. When $X$ is projective, we construct an Albanese variety with modulus and show that this is the universal regular quotient of $\text{CH}_{0}(X|D)$. As a consequence of the above decomposition, we prove the Roitman torsion theorem for the 0-cycles with modulus. We show that $\text{CH}_{0}(X|D)$ is torsion-free and there is an injective cycle class map $\text{CH}_{0}(X|D){\hookrightarrow}K_{0}(X,D)$ if $X$ is affine. For a smooth affine surface $X$, this is strengthened to show that $K_{0}(X,D)$ is an extension of $\text{CH}_{1}(X|D)$ by $\text{CH}_{0}(X|D)$.
Let $C$ be a Petri general curve of genus $g$ and $E$ a general stable vector bundle of rank $r$ and slope $g-1$ over $C$ with $h^{0}(C,E)=r+1$. For $g\geqslant (2r+2)(2r+1)$, we show how the bundle $E$ can be recovered from the tangent cone to the generalised theta divisor $\unicode[STIX]{x1D6E9}_{E}$ at ${\mathcal{O}}_{C}$. We use this to give a constructive proof and a sharpening of Brivio and Verra’s theorem that the theta map $\mathit{SU}_{C}(r){\dashrightarrow}|r\unicode[STIX]{x1D6E9}|$ is generically injective for large values of $g$.
Let $X$ be a projective manifold of dimension $n$. Suppose that $T_{X}$ contains an ample subsheaf. We show that $X$ is isomorphic to $\mathbb{P}^{n}$. As an application, we derive the classification of projective manifolds containing a $\mathbb{P}^{r}$-bundle as an ample divisor by the recent work of Litt.
We study various measures of irrationality for hypersurfaces of large degree in projective space and other varieties. These include the least degree of a rational covering of projective space, and the minimal gonality of a covering family of curves. The theme is that positivity properties of canonical bundles lead to lower bounds on these invariants. In particular, we prove that if $X\subseteq \mathbf{P}^{n+1}$ is a very general smooth hypersurface of dimension $n$ and degree $d\geqslant 2n+1$, then any dominant rational mapping $f:X{\dashrightarrow}\mathbf{P}^{n}$ must have degree at least $d-1$. We also propose a number of open problems, and we show how our methods lead to simple new proofs of results of Ran and Beheshti–Eisenbud concerning varieties of multi-secant lines.
We prove a version of Clifford’s theorem for metrized complexes. Namely, a metrized complex that carries a divisor of degree $2r$ and rank $r$ (for $0<r<g-1$) also carries a divisor of degree 2 and rank 1. We provide a structure theorem for hyperelliptic metrized complexes, and use it to classify divisors of degree bounded by the genus. We discuss a tropical version of Martens’ theorem for metric graphs.
We prove that the standard motives of a semisimple algebraic group $G$ with coefficients in a field of order $p$ are determined by the upper motives of the group $G$. As a consequence of this result, we obtain a partial version of the motivic rigidity conjecture of special linear groups. The result is then used to construct the higher indexes which characterize the motivic equivalence of semisimple algebraic groups. The criteria of motivic equivalence derived from the expressions of these indexes produce a dictionary between motives, algebraic structures and the birational geometry of twisted flag varieties. This correspondence is then described for special linear groups and orthogonal groups (the criteria associated with other groups being obtained in De Clercq and Garibaldi [Tits$p$-indexes of semisimple algebraic groups, J. Lond. Math. Soc. (2) 95 (2017) 567–585]). The proofs rely on the Levi-type motivic decompositions of isotropic twisted flag varieties due to Chernousov, Gille and Merkurjev, and on the notion of pondered field extensions.
Using the descent spectral sequence for a Galois extension of ring spectra, we compute the Picard group of the higher real $K$-theory spectra of Hopkins and Miller at height $n=p-1$, for $p$ an odd prime. More generally, we determine the Picard groups of the homotopy fixed points spectra $E_{n}^{hG}$, where $E_{n}$ is Lubin–Tate $E$-theory at the prime $p$ and height $n=p-1$, and $G$ is any finite subgroup of the extended Morava stabilizer group. We find that these Picard groups are always cyclic, generated by the suspension.
Let $M$ be an irreducible holomorphic symplectic (hyperkähler) manifold. If $b_{2}(M)\geqslant 5$, we construct a deformation $M^{\prime }$ of $M$ which admits a symplectic automorphism of infinite order. This automorphism is hyperbolic, that is, its action on the space of real $(1,1)$-classes is hyperbolic. If $b_{2}(M)\geqslant 14$, similarly, we construct a deformation which admits a parabolic automorphism (and many other automorphisms as well).
In this paper, motivated by a problem posed by Barry Mazur, we show that for smooth projective varieties over the rationals, the odd cohomology groups of degree less than or equal to the dimension can be modeled by the cohomology of an abelian variety, provided the geometric coniveau is maximal. This provides an affirmative answer to Mazur’s question for all uni-ruled threefolds, for instance. Concerning cohomology in degree three, we show that the image of the Abel–Jacobi map admits a distinguished model over the rationals.
Voevodsky has conjectured that numerical equivalence and smash-equivalence coincide for algebraic cycles on any smooth projective variety. Building on work of Vial and Kahn–Sebastian, we give some new examples of varieties where Voevodsky's conjecture is verified.
We give a new characterization, in the equicharacteristic case, of Teter rings by using Macaulay inverse systems. We extend the previous characterizations due to Teter, to Huneke and Vraciu and to Ananthnarayan et al., to any characteristic of the ground field and remove the hypothesis on the socle ideal. We construct and describe the variety parametrizing Teter covers and we show how to check if an Artin ring is Teter. If this is the case, we show how to compute a Teter cover.
For every integer $k\geqslant 3$ we construct a $k$-gonal curve $C$ along with a very ample divisor of degree $2g+k-1$ (where $g$ is the genus of $C$) to which the vanishing statement from the Green–Lazarsfeld gonality conjecture does not apply.
We obtain an algorithm computing the Chern–Schwartz–MacPherson (CSM) classes of Schubert cells in a generalized flag manifold $G/B$. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure–Lusztig-type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of $G/B$. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold $G/P$. We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjecture to the torus equivariant setting.
We introduce techniques of Suslin, Voevodsky, and others into the study of singular varieties. Our approach is modeled after Goresky–MacPherson intersection homology. We provide a formulation of perversity cycle spaces leading to perversity homology theory and a companion perversity cohomology theory based on generalized cocycle spaces. These theories lead to conditions on pairs of cycles which can be intersected and a suitable equivalence relation on cocycles/cycles enabling pairings on equivalence classes. We establish suspension and splitting theorems, as well as a localization property. Some examples of intersections on singular varieties are computed.
The Hilbert scheme $X^{[3]}$ of length-3 subschemes of a smooth projective variety $X$ is known to be smooth and projective. We investigate whether the property of having a multiplicative Chow–Künneth decomposition is stable under taking the Hilbert cube. This is achieved by considering an explicit resolution of the rational map $X^{3}{\dashrightarrow}X^{[3]}$. The case of the Hilbert square was taken care of in Shen and Vial [Mem. Amer. Math. Soc.240(1139) (2016), vii+163 pp]. The archetypical examples of varieties endowed with a multiplicative Chow–Künneth decomposition is given by abelian varieties. Recent work seems to suggest that hyperKähler varieties share the same property. Roughly, if a smooth projective variety $X$ has a multiplicative Chow–Künneth decomposition, then the Chow rings of its powers $X^{n}$ have a filtration, which is the expected Bloch–Beilinson filtration, that is split.
In this paper, we exhibit explicit automorphisms of maximal Salem degree 22 on the supersingular K3 surface of Artin invariant one for all primes $p\equiv 3~\text{mod}\,4$ in a systematic way. Automorphisms of Salem degree 22 do not lift to any characteristic zero model.
In this paper, we investigate the mixed Hodge structures of the moduli space of $\boldsymbol{\unicode[STIX]{x1D6FC}}$-stable parabolic Higgs bundles and the moduli space of $\boldsymbol{\unicode[STIX]{x1D6FC}}$-stable regular singular parabolic connections. We show that the mixed Hodge polynomials are independent of the choice of generic eigenvalues and the mixed Hodge structures of these moduli spaces are pure. Moreover, by the Riemann–Hilbert correspondence, the Poincaré polynomials of character varieties are independent of the choice of generic eigenvalues.