To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study families of rational curves on irreducible holomorphic symplectic varieties. We give a necessary and sufficient condition for a sufficiently ample linear system on a holomorphic symplectic variety of $K3^{[n]}$-type to contain a uniruled divisor covered by rational curves of primitive class. In particular, for any fixed $n$, we show that there are only finitely many polarization types of holomorphic symplectic variety of $K3^{[n]}$-type that do not contain such a uniruled divisor. As an application, we provide a generalization of a result due to Beauville–Voisin on the Chow group of $0$-cycles on such varieties.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.
We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.
We classify the subpencils of complete linear systems for the hyperplane sections on K3 surfaces obtained as the complete intersection of a hyperquadric and a hypercubic. The classification is done from three points of view, namely, the type of a general fibre, the base locus and the Horikawa index of the essential member. This classification shows the distinct phenomenons depending on the rank of the hyperquadrics containing the surface.
Suppose that $f:X\to C$ is a general Jacobian elliptic surface over ${\mathbb {C}}$ of irregularity $q$ and positive geometric genus $h$. Assume that $10 h>12(q-1)$, that $h>0$ and let $\overline {\mathcal {E}\ell \ell }$ denote the stack of generalized elliptic curves. (1) The moduli stack $\mathcal {JE}$ of such surfaces is smooth at the point $X$ and its tangent space $T$ there is naturally a direct sum of lines $(v_a)_{a\in Z}$, where $Z\subset C$ is the ramification locus of the classifying morphism $\phi :C\to \overline {\mathcal {E}\ell \ell }$ that corresponds to $X\to C$. (2) For each $a\in Z$ the map $\overline {\nabla }_{v_a}:H^{2,0}(X)\to H^{1,1}_{\rm prim}(X)$ defined by the derivative $per_*$ of the period map $per$ is of rank one. Its image is a line ${\mathbb {C}}[\eta _a]$ and its kernel is $H^0(X,\Omega ^2_X(-E_a))$, where $E_a=f^{-1}(a)$. (3) The classes $[\eta _a]$ form an orthogonal basis of $H^{1,1}_{\rm prim}(X)$ and $[\eta _a]$ is represented by a meromorphic $2$-form $\eta _a$ in $H^0(X,\Omega ^2_X(2E_a))$ of the second kind. (4) We prove a local Schottky theorem; that is, we give a description of $per_*$ in terms of a certain additional structure on the vector bundles that are involved. Assume further that $8h>10(q-1)$ and that $h\ge q+3$. (5) Given the period point $per(X)$ of $X$ that classifies the Hodge structure on the primitive cohomology $H^2_{\rm prim}(X)$ and the image of $T$ under $per_*$ we recover $Z$ as a subset of ${\mathbb {P}}^{h-1}$ and then, by quadratic interpolation, the curve $C$. (6) We prove a generic Torelli theorem for these surfaces. Everything relies on the construction, via certain kinds of Schiffer variations of curves, of certain variations of $X$ for which $per_*$ can be calculated. (In an earlier version of this paper we used variations constructed by Fay. However, Schiffer variations are slightly more powerful.)
We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.
We compute the connective spectra of maps from $\mathbb {Z}$ to the Picard spectra of the spherical Witt vectors associated with perfect rings of characteristic $p$. As an application, we determine the connective spectrum of maps from $\mathbb {Z}$ to the Picard spectrum of the sphere spectrum.
We generalize Bloch’s map on torsion cycles from algebraically closed fields to arbitrary fields. While Bloch’s map over algebraically closed fields is injective for zero-cycles and for cycles of codimension at most two, we show that the generalization to arbitrary fields is only injective for cycles of codimension at most two but, in general, not for zero-cycles. Our result implies that Jannsen’s cycle class map in integral $\ell $-adic continuous étale cohomology is, in general, not injective on torsion zero-cycles over finitely generated fields. This answers a question of Scavia and Suzuki.
We introduce the notion of refined unramified cohomology of algebraic schemes and prove comparison theorems that identify some of these groups with cycle groups. This generalizes to cycles of arbitrary codimension previous results of Bloch–Ogus, Colliot-Thélène–Voisin, Kahn, Voisin, and Ma. We combine our approach with the Bloch–Kato conjecture, proven by Voevodsky, to show that on a smooth complex projective variety, any homologically trivial torsion cycle with trivial Abel–Jacobi invariant has coniveau $1$. This establishes a torsion version of a conjecture of Jannsen originally formulated $\otimes \mathbb {Q}$. We further show that the group of homologically trivial torsion cycles modulo algebraic equivalence has a finite filtration (by coniveau) such that the graded quotients are determined by higher Abel–Jacobi invariants that we construct. This may be seen as a variant for torsion cycles modulo algebraic equivalence of a conjecture of Green. We also prove $\ell$-adic analogues of these results over any field $k$ which contains all $\ell$-power roots of unity.
We answer an open problem posed by Iarrobino, Hilbert scheme of points: Overview of last ten years. Proceedings of Symposia in Pure Mathematics, 46 (American Mathematical Society, Providence, RI, 1987), 297–320: Is there a component of the punctual Hilbert scheme [Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert', in Séminaire Bourbaki, 6 (Societe Mathematique de France, Paris, 1995), 221, 249–276] $\operatorname {\mathrm {Hilb}}^d({\mathscr {O}}_{\mathbb {A}^n,p})$ with dimension less than $(n-1)(d-1)$? For each $n\geq 4$, we construct an infinite class of elementary components in $\operatorname {\mathrm {Hilb}}^d(\mathbb {A}^n)$ producing such examples. Our techniques also allow us to construct an explicit example of a local Artinian ring [Iarrobino and Kanev, Power sums, Gorenstein algebras, and determinantal loci (Springer-Verlag, Berlin, 1999), 221–226] of the form with trivial negative tangents, vanishing nonnegative obstruction space, and socle-dimension $2$.
We prove the integral Hodge conjecture for one-cycles on a principally polarized complex abelian variety whose minimal class is algebraic. In particular, the Jacobian of a smooth projective curve over the complex numbers satisfies the integral Hodge conjecture for one-cycles. The main ingredient is a lift of the Fourier transform to integral Chow groups. Similarly, we prove the integral Tate conjecture for one-cycles on the Jacobian of a smooth projective curve over the separable closure of a finitely generated field. Furthermore, abelian varieties satisfying such a conjecture are dense in their moduli space.
Let BG be the classifying space of an algebraic group G over the field ${\mathbb C}$ of complex numbers. There are smooth projective approximations X of $BG\times {\mathbb P}^{\infty}$, by Ekedahl. We compute a new stable birational invariant of X defined by the difference of two coniveau filtrations of X, by Benoist and Ottem. Hence we give many examples such that two coniveau filtrations are different.
Let F be a finite extension of ${\mathbb Q}_p$. Let $\Omega$ be the Drinfeld upper half plane, and $\Sigma^1$ the first Drinfeld covering of $\Omega$. We study the affinoid open subset $\Sigma^1_v$ of $\Sigma^1$ above a vertex of the Bruhat–Tits tree for $\text{GL}_2(F)$. Our main result is that $\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$, which we establish by showing that $\text{Pic}({\mathbf Y})[p] = 0$ for ${\mathbf Y}$ the Deligne–Lusztig variety of $\text{SL}_2\!\left({\mathbb F}_q\right)$. One formal consequence is a description of the representation $H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$ of $\text{GL}_2(\mathcal{O}_F)$ as the p-adic completion of $\mathcal{O}\!\left(\Sigma^1_v\right)^\times$.
We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties $V \times W$ in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifying their various functorial properties. We introduce a log version of K-theory and prove the formula there as well.
This paper is devoted to determine the geometry of a class of smooth projective rational surfaces whose minimal models are the Hirzebruch ones; concretely, they are obtained as the blowup of a Hirzebruch surface at collinear points. Explicit descriptions of their effective monoids are given, and we present a decomposition for every effective class. Such decomposition is used to confirm the effectiveness of some divisor classes when the Riemann–Roch theorem does not give information about their effectiveness. Furthermore, we study the nef divisor classes on such surfaces. We provide an explicit description for their nef monoids, and, moreover, we present a decomposition for every nef class. On the other hand, we prove that these surfaces satisfy the anticanonical orthogonal property. As a consequence, the surfaces are Harbourne–Hirschowitz and their Cox rings are finitely generated. Finally, we prove that the complete linear system associated with any nef divisor is base-point-free; thus, the semi-ample and nef monoids coincide. The base field is assumed to be algebraically closed of arbitrary characteristic.
We determine all the extremal Gromov-Witten invariants of the Hilbert scheme of $3$ points on a smooth projective complex surface. Our result for the genus-$1$ case verifies a conjecture that we propose for the genus-$1$ extremal Gromov-Witten invariant of the Hilbert scheme of n points with n being arbitrary. The main ideas in the proofs are to use geometric arguments involving the cosection localization theory of Kiem and J. Li [17, 23], algebraic manipulations related to the Heisenberg operators of Grojnowski [13] and Nakajima [34], and the virtual localization formulas of Gromov-Witten theory [12, 20, 30].
Let $f : X \to S$ be a family of smooth projective algebraic varieties over a smooth connected quasi-projective base $S$, and let $\mathbb {V} = R^{2k} f_{*} \mathbb {Z}(k)$ be the integral variation of Hodge structure coming from degree $2k$ cohomology it induces. Associated to $\mathbb {V}$ one has the so-called Hodge locus$\textrm {HL}(S) \subset S$, which is a countable union of ‘special’ algebraic subvarieties of $S$ parametrizing those fibres of $\mathbb {V}$ possessing extra Hodge tensors (and so, conjecturally, those fibres of $f$ possessing extra algebraic cycles). The special subvarieties belong to a larger class of so-called weakly special subvarieties, which are subvarieties of $S$ maximal for their algebraic monodromy groups. For each positive integer $d$, we give an algorithm to compute the set of all weakly special subvarieties $Z \subset S$ of degree at most $d$ (with the degree taken relative to a choice of projective compactification $S \subset \overline {S}$ and very ample line bundle $\mathcal {L}$ on $\overline {S}$). As a corollary of our algorithm we prove conjectures of Daw–Ren and Daw–Javanpeykar–Kühne on the finiteness of sets of special and weakly special subvarieties of bounded degree.
Jannsen asked whether the rational cycle class map in continuous $\ell $-adic cohomology is injective, in every codimension for all smooth projective varieties over a field of finite type over the prime field. As recently pointed out by Schreieder, the integral version of Jannsen’s question is also of interest. We exhibit several examples showing that the answer to the integral version is negative in general. Our examples also have consequences for the coniveau filtration on Chow groups and the transcendental Abel-Jacobi map constructed by Schreieder.