To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Each metric graph has canonically associated to it a polarized real torus called its tropical Jacobian. A fundamental real-valued invariant associated to each polarized real torus is its tropical moment. We give an explicit and efficiently computable formula for the tropical moment of a tropical Jacobian in terms of potential theory on the underlying metric graph. We show that there exists a universal linear relation between the tropical moment, a certain capacity called the tau invariant, and the total length of a metric graph. To put our formula in a broader context, we relate our work to the computation of heights attached to principally polarized abelian varieties.
Investigating a conjecture of Zannier, we study irreducible subvarieties of abelian schemes that dominate the base and contain a Zariski dense set of torsion points that lie on pairwise isogenous fibers. If everything is defined over the algebraic numbers and the abelian scheme has maximal variation, we prove that the geometric generic fiber of such a subvariety is a union of torsion cosets. We go on to prove fully or partially explicit versions of this result in fibered powers of the Legendre family of elliptic curves. Finally, we apply a recent result of Galateau and Martínez to obtain uniform bounds on the number of maximal torsion cosets in the Manin–Mumford problem across a given isogeny class. For the proofs, we adapt the strategy, due to Lang, Serre, Tate, and Hindry, of using Galois automorphisms that act on the torsion as homotheties to the family setting.
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus 1 curves over function fields admit no points over the perfect closure of the base field) and use it to show that any non-Jacobian elliptic structure on a very general supersingular K3 surface has no purely inseparable multisections. We also describe specific examples of genus 1 fibrations on supersingular K3 surfaces without purely inseparable multisections.
We consider Shimura varieties for orthogonal or spin groups acting on hermitian symmetric domains of type IV. We give regular $p$-adic integral models for these varieties over odd primes $p$ at which the level subgroup is the connected stabilizer of a vertex lattice in the orthogonal space. Our construction is obtained by combining results of Kisin and the first author with an explicit presentation and resolution of a corresponding local model.
Let $A$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. We prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.
We prove the Kawamata–Viehweg vanishing theorem for surfaces of del Pezzo type over perfect fields of positive characteristic $p>5$. As a consequence, we show that klt threefold singularities over a perfect base field of characteristic $p>5$ are rational. We show that these theorems are sharp by providing counterexamples in characteristic $5$.
Let${\mathbb M}$ be an affine variety equipped with a foliation, both defined over a number field ${\mathbb K}$. For an algebraic $V\subset {\mathbb M}$ over ${\mathbb K}$, write $\delta _{V}$ for the maximum of the degree and log-height of V. Write $\Sigma _{V}$ for the points where the leaves intersect V improperly. Fix a compact subset ${\mathcal B}$ of a leaf ${\mathcal L}$. We prove effective bounds on the geometry of the intersection ${\mathcal B}\cap V$. In particular, when $\operatorname {codim} V=\dim {\mathcal L}$ we prove that $\#({\mathcal B}\cap V)$ is bounded by a polynomial in $\delta _{V}$ and $\log \operatorname {dist}^{-1}({\mathcal B},\Sigma _{V})$. Using these bounds we prove a result on the interpolation of algebraic points in images of ${\mathcal B}\cap V$ by an algebraic map $\Phi $. For instance, under suitable conditions we show that $\Phi ({\mathcal B}\cap V)$ contains at most $\operatorname {poly}(g,h)$ algebraic points of log-height h and degree g.
We deduce several results in Diophantine geometry. Following Masser and Zannier, we prove that given a pair of sections $P,Q$ of a nonisotrivial family of squares of elliptic curves that do not satisfy a constant relation, whenever $P,Q$ are simultaneously torsion their order of torsion is bounded effectively by a polynomial in $\delta _{P},\delta _{Q}$; in particular, the set of such simultaneous torsion points is effectively computable in polynomial time. Following Pila, we prove that given $V\subset {\mathbb C}^{n}$, there is an (ineffective) upper bound, polynomial in $\delta _{V}$, for the degrees and discriminants of maximal special subvarieties; in particular, it follows that the André–Oort conjecture for powers of the modular curve is decidable in polynomial time (by an algorithm depending on a universal, ineffective Siegel constant). Following Schmidt, we show that our counting result implies a Galois-orbit lower bound for torsion points on elliptic curves of the type previously obtained using transcendence methods by David.
We show that the conjecture of [27] for the special value at $s=1$ of the zeta function of an arithmetic surface is equivalent to the Birch–Swinnerton–Dyer conjecture for the Jacobian of the generic fibre.
In this article we study integral models of Shimura varieties, called Pappas–Rapoport splitting model, for ramified P.E.L. Shimira data. We study the special fiber and some stratification of these models, in particular we show that these are smooth and the Rapoport locus and the $\mu $-ordinary locus are dense, under some condition on the ramification.
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero non-archimedean field. The proof relies on a novel notion of generic points in rigid analytic geometry which are well adapted to ‘spreading out’ arguments, in analogy with the use of generic points in scheme theory. As an application, we develop a six-functor formalism for Zariski-constructible étale sheaves on characteristic zero rigid spaces. Among other things, this implies that characteristic zero rigid spaces support a well-behaved theory of perverse sheaves.
We prove a formula, which, given a principally polarized abelian variety $(A,\lambda )$ over the field of algebraic numbers, relates the stable Faltings height of $A$ with the Néron–Tate height of a symmetric theta divisor on $A$. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener. The local non-archimedean terms in our formula can be expressed as the tropical moments of the tropicalizations of $(A,\lambda )$.
We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial $\Theta $-operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial $\Theta $-operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.
We give a corrected version of our previous lower bound on the value set of binomials (Canad. Math. Bull., v.63, 2020, 187–196). The other results are not affected.
We develop a dimension theory for coadmissible $\widehat {\mathcal {D}}$-modules on rigid analytic spaces and study those which are of minimal dimension, in analogy to the theory of holonomic $\mathcal {D}$-modules in the algebraic setting. We discuss a number of pathologies contained in this subcategory (modules of infinite length, infinite-dimensional fibres). We prove stability results for closed immersions and the duality functor, and show that all higher direct images of integrable connections restricted to a Zariski open subspace are coadmissible of minimal dimension. It follows that the local cohomology sheaves $\underline {H}^{i}_Z(\mathcal {M})$ with support in a closed analytic subset $Z$ of $X$ are also coadmissible of minimal dimension for any integrable connection $\mathcal {M}$ on $X$.
Consider the algebraic function $\Phi _{g,n}$ that assigns to a general $g$-dimensional abelian variety an $n$-torsion point. A question first posed by Klein asks: What is the minimal $d$ such that, after a rational change of variables, the function $\Phi _{g,n}$ can be written as an algebraic function of $d$ variables? Using techniques from the deformation theory of $p$-divisible groups and finite flat group schemes, we answer this question by computing the essential dimension and $p$-dimension of congruence covers of the moduli space of principally polarized abelian varieties. We apply this result to compute the essential $p$-dimension of congruence covers of the moduli space of genus $g$ curves, as well as its hyperelliptic locus, and of certain locally symmetric varieties. These results include cases where the locally symmetric variety $M$ is proper. As far as we know, these are the first examples of nontrivial lower bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic variety.
We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.
In this paper we give an interpretation, in terms of derived de Rham complexes, of Scholze's de Rham period sheaf and Tan and Tong's crystalline period sheaf.
We provide a new formalism of de Rham–Witt complexes in the logarithmic setting. This construction generalises a result of Bhatt–Lurie–Mathew and agrees with those of Hyodo–Kato and Matsuue for log-smooth schemes of log-Cartier type. We then use our construction to study the monodromy action and slopes of Frobenius on log crystalline cohomology.