To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let f be an $L^2$-normalized holomorphic newform of weight k on $\Gamma _0(N) \backslash \mathbb {H}$ with N squarefree or, more generally, on any hyperbolic surface $\Gamma \backslash \mathbb {H}$ attached to an Eichler order of squarefree level in an indefinite quaternion algebra over $\mathbb {Q}$. Denote by V the hyperbolic volume of said surface. We prove the sup-norm estimate
$$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$
with absolute implied constant. For a cuspidal Maaß newform $\varphi $ of eigenvalue $\lambda $ on such a surface, we prove that
For any smooth proper rigid space $X$ over a complete algebraically closed extension $K$ of $\mathbb {Q}_p$ we give a geometrisation of the $p$-adic Simpson correspondence of rank one in terms of analytic moduli spaces: the $p$-adic character variety is canonically an étale twist of the moduli space of topologically torsion Higgs line bundles over the Hitchin base. This also eliminates the choice of an exponential. The key idea is to relate both sides to moduli spaces of $v$-line bundles. As an application, we study a major open question in $p$-adic non-abelian Hodge theory raised by Faltings, namely which Higgs bundles correspond to continuous representations under the $p$-adic Simpson correspondence. We answer this question in rank one by describing the essential image of the continuous characters $\pi ^{{\mathrm {\acute {e}t}}}_1(X)\to K^\times$ in terms of moduli spaces: for projective $X$ over $K=\mathbb {C}_p$, it is given by Higgs line bundles with vanishing Chern classes like in complex geometry. However, in general, the correct condition is the strictly stronger assumption that the underlying line bundle is a topologically torsion element in the topological group $\operatorname {Pic}(X)$.
For any abelian group $A$, we prove an asymptotic formula for the number of $A$-extensions $K/\mathbb {Q}$ of bounded discriminant such that the associated norm one torus $R_{K/\mathbb {Q}}^1 \mathbb {G}_m$ satisfies weak approximation. We are also able to produce new results on the Hasse norm principle and to provide new explicit values for the leading constant in some instances of Malle's conjecture.
In his work on modularity of elliptic curves and Fermat’s last theorem, A. Wiles introduced two measures of congruences between Galois representations and between modular forms. One measure is related to the order of a Selmer group associated to a newform $f \in S_2(\Gamma _0(N))$ (and closely linked to deformations of the Galois representation $\rho _f$ associated to f), whilst the other measure is related to the congruence module associated to f (and is closely linked to Hecke rings and congruences between f and other newforms in $S_2(\Gamma _0(N))$). The equality of these two measures led to isomorphisms $R={\mathbf T}$ between deformation rings and Hecke rings (via a numerical criterion for isomorphisms that Wiles proved) and showed these rings to be complete intersections.
We continue our study begun in [BKM21] of the Wiles defect of deformation rings and Hecke rings (at a newform f) acting on the cohomology of Shimura curves over ${\mathbf Q}$: It is defined to be the difference between these two measures of congruences. The Wiles defect thus arises from the failure of the Wiles numerical criterion at an augmentation $\lambda _f:{\mathbf T} \to {\mathcal O}$. In situations we study here, the Taylor–Wiles–Kisin patching method gives an isomorphism $ R={\mathbf T}$ without the rings being complete intersections. Using novel arguments in commutative algebra and patching, we generalize significantly and give different proofs of the results in [BKM21] that compute the Wiles defect at $\lambda _f: R={\mathbf T} \to {\mathcal O}$, and explain in an a priori manner why the answer in [BKM21] is a sum of local defects. As a curious application of our work we give a new and more robust approach to the result of Ribet–Takahashi that computes change of degrees of optimal parametrizations of elliptic curves over ${\mathbf Q}$ by Shimura curves as we vary the Shimura curve. The results we prove are not attainable using only the methods of Ribet–Takahashi.
Kobayashi–Ochiai proved that the set of dominant maps from a fixed variety to a fixed variety of general type is finite. We prove the natural extension of their finiteness theorem to Campana’s orbifold pairs.
We introduce a new class of generalised quadratic forms over totally real number fields, which is rich enough to capture the arithmetic of arbitrary systems of quadrics over the rational numbers. We explore this connection through a version of the Hardy–Littlewood circle method over number fields.
In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form $T^p+c$, where p is a prime number and where the orbit of $0$ is finite. For example, if $p=2$ and $0$ is periodic under $T^2+c$ with $c\in \mathbb {R}$, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these f, our method has application to the irreducibility of polynomials. Indeed, say y is preperiodic under f but not periodic. Then any iteration of f minus y is irreducible in $\mathbb {Q}(y)[T]$.
Let $X$ be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring $R$, and $\mathfrak {m}$ a modulus on $X$, given by a closed subscheme of $X$ which is geometrically reduced. The generalized Jacobian $J_\mathfrak {m}$ of $X$ with respect to $\mathfrak {m}$ is then an extension of the Jacobian of $X$ by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular model of $X$ over $R$. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves $X_0(N)$ with moduli supported on the cusps.
We prove that the Hodge–Tate spectral sequence of a proper smooth rigid analytic variety can be reconstructed from its infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology through the Bialynicki–Birula map. We also give a new proof of the torsion-freeness of the infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology independent of Conrad–Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge–Tate spectral sequences is equivalent to that of Hodge–de Rham spectral sequences.
In the present paper, we study a new kind of anabelian phenomenon concerning the smooth pointed stable curves in positive characteristic. It shows that the topology of moduli spaces of curves can be understood from the viewpoint of anabelian geometry. We formulate some new anabelian-geometric conjectures concerning tame fundamental groups of curves over algebraically closed fields of characteristic $p>0$ from the point of view of moduli spaces. The conjectures are generalized versions of the Weak Isom-version of the Grothendieck conjecture for curves over algebraically closed fields of characteristic $p>0$ which was formulated by Tamagawa. Moreover, we prove that the conjectures hold for certain points lying in the moduli space of curves of genus $0$.
We prove the Hasse principle for a smooth projective variety $X\subset \mathbb {P}^{n-1}_\mathbb {Q}$ defined by a system of two cubic forms $F,G$ as long as $n\geq 39$. The main tool here is the development of a version of Kloosterman refinement for a smooth system of equations defined over $\mathbb {Q}$.
Irregular cusps of an orthogonal modular variety are cusps where the lattice for Fourier expansion is strictly smaller than the lattice of translation. The presence of such a cusp affects the study of pluricanonical forms on the modular variety using modular forms. We study toroidal compactification over an irregular cusp, and clarify there the cusp form criterion for the calculation of Kodaira dimension. At the same time, we show that irregular cusps do not arise frequently: besides the cases when the group is neat or contains $-1$, we prove that the stable orthogonal groups of most (but not all) even lattices have no irregular cusp.
Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$superelliptic equation$y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.
In this paper, we investigate the theory of heights in a family of stacky curves following recent work of Ellenberg, Satriano, and Zureick-Brown. We first give an elementary construction of a height which is seen to be dual to theirs. We count rational points having bounded ESZ-B height on a particular stacky curve, answering a question of Ellenberg, Satriano, and Zureick-Brown. We also show that when the Euler characteristic of stacky curves is non-positive, the ESZ-B height coming from the anti-canonical divisor class fails to have the Northcott property. We prove that a stacky version of a conjecture of Vojta is equivalent to the $abc$-conjecture.
The Manin–Peyre conjecture is established for a class of smooth spherical Fano varieties of semisimple rank one. This includes all smooth spherical Fano threefolds of type T as well as some higher-dimensional smooth spherical Fano varieties.
Let K be a non-Archimedean valued field with valuation ring R. Let $C_\eta $ be a K-curve with compact-type reduction, so its Jacobian $J_\eta $ extends to an abelian R-scheme J. We prove that an Abel–Jacobi map $\iota \colon C_\eta \to J_\eta $ extends to a morphism $C\to J$, where C is a compact-type R-model of J, and we show this is a closed immersion when the special fiber of C has no rational components. To do so, we apply a rigid-analytic “fiberwise” criterion for a morphism to extend to integral models, and geometric results of Bosch and Lütkebohmert on the analytic structure of $J_\eta $.
We prove that after inverting the Planck constant $h$, the Bezrukavnikov–Kaledin quantization $(X, {\mathcal {O}}_h)$ of symplectic variety $X$ in characteristic $p$ with $H^2(X, {\mathcal {O}}_X) =0$ is Morita equivalent to a certain central reduction of the algebra of differential operators on $X$.
Bogomolov and Tschinkel [‘Algebraic varieties over small fields’, Diophantine Geometry, U. Zannier (ed.), CRM Series, 4 (Scuola Normale Superiore di Pisa, Pisa, 2007), 73–91] proved that, given two complex elliptic curves $E_1$ and $E_2$ along with even degree-$2$ maps $\pi _j\colon E_j\to \mathbb {P}^1$ having different branch loci, the intersection of the image of the torsion points of $E_1$ and $E_2$ under their respective $\pi _j$ is finite. They conjectured (also in works with Fu) that the cardinality of this intersection is uniformly bounded independently of the elliptic curves. The recent proof of the uniform Manin–Mumford conjecture implies a full solution of the Bogomolov–Fu–Tschinkel conjecture. In this paper, we prove a generalisation of the Bogomolov–Fu–Tschinkel conjecture whereby, instead of even degree-$2$ maps, one can use any rational functions of bounded degree on the elliptic curves as long as they have different branch loci. Our approach combines Nevanlinna theory with the uniform Manin–Mumford conjecture. With similar techniques, we also prove a result on lower bounds for ranks of elliptic curves over number fields.
For homogeneous polynomials $G_1,\ldots ,G_k$ over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of $G_1,\ldots ,G_k$ to the Monsky–Washnitzer complex associated with some affine bundle over the complement $\mathbb {P}^n\setminus X_G$ of the common zero $X_G$ of $G_1,\ldots ,G_k$, which computes the rigid cohomology of $\mathbb {P}^n\setminus X_G$. We verify that this cochain map realizes the rigid cohomology of $\mathbb {P}^n\setminus X_G$ as a direct summand of the Dwork cohomology of $G_1,\ldots ,G_k$. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.
We investigate the equation $D=x^4-y^4$ in field extensions. As an application, for a prime number p, we find solutions to $p=x^4-y^4$ if $p\equiv 11$ (mod 16) and $p^3=x^4-y^4$ if $p\equiv 3$ (mod 16) in all cubic extensions of $\mathbb{Q}(i)$.