To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a construction of integral local Shimura varieties which are formal schemes that generalise the well-known integral models of the Drinfeld p-adic upper half spaces. The construction applies to all classical groups, at least for odd p. These formal schemes also generalise the formal schemes defined by Rapoport-Zink via moduli of p-divisible groups, and are characterised purely in group-theoretic terms.
More precisely, for a local p-adic Shimura datum $(G, b, \mu)$ and a quasi-parahoric group scheme ${\mathcal {G}} $ for G, Scholze has defined a functor on perfectoid spaces which parametrises p-adic shtukas. He conjectured that this functor is representable by a normal formal scheme which is locally formally of finite type and flat over $O_{\breve E}$. Scholze-Weinstein proved this conjecture when $(G, b, \mu)$ is of (P)EL type by using Rapoport-Zink formal schemes. We prove this conjecture for any $(G, \mu)$ of abelian type when $p\neq 2$, and when $p=2$ and G is of type A or C. We also relate the generic fibre of this formal scheme to the local Shimura variety, a rigid-analytic space attached by Scholze to $(G, b, \mu , {\mathcal {G}})$.
We study the so-called averaging functors from the geometric Langlands program in the setting of Fargues’ program. This makes explicit certain cases of the spectral action which was recently introduced by Fargues-Scholze in the local Langlands program for $\mathrm {GL}_n$. Using these averaging functors, we verify (without using local Langlands) that the Fargues-Scholze parameters associated to supercuspidal modular representations of $\mathrm {GL}_2$ are irreducible. We also attach to any irreducible $\ell $-adic Weil representation of degree n an Hecke eigensheaf on $\mathrm {Bun}_n$ and show, using the local Langlands correspondence and recent results of Hansen and Hansen-Kaletha-Weinstein, that it satisfies most of the requirements of Fargues’ conjecture for $\mathrm {GL}_n$.
We sharpen and generalize the dimension growth bounds for the number of points of bounded height lying on an irreducible algebraic variety of degree d, over any global field. In particular, we focus on the affine hypersurface situation by relaxing the condition on the top degree homogeneous part of the polynomial describing the affine hypersurface, while sharpening the dependence on the degree in the bounds compared to previous results. We formulate a conjecture about plane curves which provides a conjectural approach to the uniform degree $3$ case (the only remaining open case). For induction on dimension, we develop a higher-dimensional effective version of Hilbert’s irreducibility theorem, which is of independent interest.
We first extend previous results of Koskivirta with Wedhorn and Goldring regarding the existence of $\mu $-ordinary Hasse invariants for Hodge-type Shimura varieties to other automorphic line bundles. We also determine exactly which line bundles admit nonzero sections on the stack of G-zips of Pink–Wedhorn–Ziegler. Then, we define and study the Cox ring of the stack of G-zips and show that it is always finitely generated. Finally, beyond the case of line bundles, we define a ring of vector-valued automorphic forms on the stack of G-zips and study its properties. We prove that it is finitely generated in certain cases.
We construct universal G-zips on good reductions of the Pappas-Rapoport splitting models for PEL-type Shimura varieties. We study the induced Ekedahl-Oort stratification, which sheds new light on the mod p geometry of splitting models. Building on the work of Lan on arithmetic compactifications of splitting models, we further extend these constructions to smooth toroidal compactifications. Combined with the work of Goldring-Koskivirta on group theoretical Hasse invariants, we get an application to Galois representations associated to torsion classes in coherent cohomology in the ramified setting.
Given a prime p, a finite extension $L/\mathbb{Q}_{p}$, a connected p-adic reductive group $G/L$, and a smooth irreducible representation $\pi$ of G(L), Fargues and Scholze recently attached a semisimple L-parameter to such a $\pi$, giving a general candidate for the local Langlands correspondence. It is natural to ask whether this construction is compatible with known instances of the correspondence after semisimplification. For $G = \mathrm{GL}_{n}$ and its inner forms, Fargues and Scholze, and Hansen, Kaletha and Weinstein showed that the correspondence is compatible with the correspondence of Harris, and Taylor and Henniart. We verify a similar compatibility for $G =\mathrm{GSp}_{4}$ and its unique non-split inner form $G = \mathrm{GU}_{2}(D)$, where D is the quaternion division algebra over L, assuming that $L/\mathbb{Q}_{p}$ is unramified and $p > 2$. In this case, the local Langlands correspondence has been constructed by Gan and Takeda, and Gan and Tantono. Analogous to the case of $\mathrm{GL}_{n}$ and its inner forms, this compatibility is proven by describing the Weil group action on the cohomology of a local Shimura variety associated with $\mathrm{GSp}_{4}$, using basic uniformization of abelian-type Shimura varieties due to Shen, combined with various global results of Kret and Shin, and Sorensen on Galois representations in the cohomology of global Shimura varieties associated with inner forms of $\mathrm{GSp}_{4}$ over a totally real field. After showing the parameters are the same, we apply some ideas from the geometry of the Fargues–Scholze construction explored recently by Hansen. This allows us to give a more precise description of the cohomology of this local Shimura variety, verifying a strong form of the Kottwitz conjecture in the process.
We formulate Guo–Jacquet type fundamental lemma conjectures and arithmetic transfer conjectures for inner forms of $GL_{2n}$. Our main results confirm these conjectures for division algebras of invariant $1/4$ and $3/4$.
We consider Shimura varieties associated to a unitary group of signature $(n-s,s)$ where n is even. For these varieties, we construct smooth p-adic integral models for $s=1$ and regular p-adic integral models for $s=2$ and $s=3$ over odd primes p which ramify in the imaginary quadratic field with level subgroup at p given by the stabilizer of a $\pi $-modular lattice in the hermitian space. Our construction, which has an explicit moduli-theoretic description, is given by an explicit resolution of a corresponding local model.
We construct explicit generating series of arithmetic extensions of Kudla’s special divisors on integral models of unitary Shimura varieties over CM fields with arbitrary split levels and prove that they are modular forms valued in the arithmetic Chow groups. This provides a partial solution to Kudla’s modularity problem. The main ingredient in our construction is S. Zhang’s theory of admissible arithmetic divisors. The main ingredient in the proof is an arithmetic mixed Siegel-Weil formula.
We study the singularities of varieties obtained as infinitesimal quotients by $1$-foliations in positive characteristic. (1) We show that quotients by (log) canonical $1$-foliations preserve the (log) singularities of the MMP. (2) We prove that quotients by multiplicative derivations preserve many properties, amongst which most F-singularities. (3) We formulate a notion of families of $1$-foliations, and investigate the corresponding families of quotients.
We prove a conjecture of Pappas and Rapoport for all Shimura varieties of abelian type with parahoric level structure when $p>2$ by showing that the Kisin–Pappas–Zhou integral models of Shimura varieties of abelian type are canonical. In particular, this shows that these models are independent of the choices made during their construction, and that they satisfy functoriality with respect to morphisms of Shimura data.
We prove new fundamental lemma and arithmetic fundamental lemma identities for general linear groups over quaternion division algebras. In particular, we verify the transfer conjecture and the arithmetic transfer conjecture from Li and Mihatsch (2023, Preprint, arXiv:2307.11716) in cases of Hasse invariant $1/2$.
Let X be a smooth projective variety over a complete discretely valued field of mixed characteristic. We solve non-Archimedean Monge–Ampère equations on X assuming resolution and embedded resolution of singularities. We follow the variational approach of Boucksom, Favre, and Jonsson proving the continuity of the plurisubharmonic envelope of a continuous metric on an ample line bundle on X. We replace the use of multiplier ideals in equicharacteristic zero by the use of perturbation friendly test ideals introduced by Bhatt, Ma, Patakfalvi, Schwede, Tucker, Waldron, and Witaszek building upon previous constructions by Hacon, Lamarche, and Schwede.
We consider integral models of Hilbert modular varieties with Iwahori level structure at primes over p, first proving a Kodaira–Spencer isomorphism that gives a concise description of their dualizing sheaves. We then analyze fibres of the degeneracy maps to Hilbert modular varieties of level prime to p and deduce the vanishing of higher direct images of structure and dualizing sheaves, generalizing prior work with Kassaei and Sasaki (for p unramified in the totally real field F). We apply the vanishing results to prove flatness of the finite morphisms in the resulting Stein factorizations, and combine them with the Kodaira–Spencer isomorphism to simplify and generalize the construction of Hecke operators at primes over p on Hilbert modular forms (integrally and mod p).
We examine the maximum dimension of a linear system of plane cubic curves whose $\mathbb {F}_q$-members are all geometrically irreducible. Computational evidence suggests that such a system has a maximum (projective) dimension of $3$. As a step towards the conjecture, we prove that there exists a three-dimensional linear system $\mathcal {L}$ with at most one geometrically reducible $\mathbb {F}_q$-member.
A central question in Arithmetic geometry is to determine for which polynomials $f \in \mathbb {Z}[t]$ and which number fields K the Hasse principle holds for the affine equation $f(t) = \mathbf {N}_{K/\mathbb {Q}}(\mathbf {x}) \neq 0$. Whilst extensively studied in the literature, current results are largely limited to polynomials and number fields of low degree. In this paper, we establish the Hasse principle for a wide family of polynomials and number fields, including polynomials that are products of arbitrarily many linear, quadratic or cubic factors. The proof generalises an argument of Irving [27], which makes use of the beta sieve of Rosser and Iwaniec. As a further application of our sieve results, we prove new cases of a conjecture of Harpaz and Wittenberg on locally split values of polynomials over number fields, and discuss consequences for rational points in fibrations.
We explore generalizations of the p-adic Simpson correspondence on smooth proper rigid spaces to principal bundles under rigid group varieties G. For commutative G, we prove that such a correspondence exists if and only if the Lie group logarithm is surjective. Second, we treat the case of general G on ordinary abelian varieties, in which case we prove a generalization of Faltings’ “small” correspondence to general rigid groups. On abeloid varieties, we also prove an analog of the classical Corlette–Simpson correspondence for principal bundles under linear algebraic groups.
We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In particular, under the assumptions that all elliptic curves over a number field K are modular and have L-functions which satisfy the Generalized Riemann Hypothesis, we show that the average analytic rank of isomorphism classes of elliptic curves over K is bounded above by $(9\deg (K)+1)/2$, when ordered by naive height. A key ingredient in the proof is giving asymptotics for the number of elliptic curves over an arbitrary number field with a prescribed local condition; these results are obtained by proving general results for counting points of bounded height on weighted projective stacks with a prescribed local condition, which may be of independent interest.
Building upon the classification by Lacini, we determine the isomorphism classes of log del Pezzo surfaces of rank one over an algebraically closed field of characteristic five either which are not log liftable over the ring of Witt vectors or whose singularities are not feasible in characteristic zero. We also show that such a surface is always constructed from the Du Val del Pezzo surface of Dynkin type $2[2^4]$. Furthermore, We show that the Kawamata–Viehweg vanishing theorem for ample $\mathbb {Z}$-Weil divisors holds for log del Pezzo surfaces of rank one in characteristic five if those singularities are feasible in characteristic zero.
We discuss, in a non-Archimedean setting, the distribution of the coefficients of L-polynomials of curves of genus g over $\mathbb{F}_q$. Among other results, this allows us to prove that the $\mathbb{Q}$-vector space spanned by such characteristic polynomials has dimension g + 1. We also state a conjecture about the Archimedean distribution of the number of rational points of curves over finite fields.