To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We systematically produce algebraic varieties with torus action by constructing them as suitably embedded subvarieties of toric varieties. The resulting varieties admit an explicit treatment in terms of toric geometry and graded ring theory. Our approach extends existing constructions of rational varieties with torus action of complexity one and delivers all Mori dream spaces with torus action. We exhibit the example class of ‘general arrangement varieties’ and obtain classification results in the case of complexity two and Picard number at most two, extending former work in complexity one.
Nous montrons, pour une grande famille de propriétés des espaces homogènes, qu’une telle propriété vaut pour tout espace homogène d’un groupe linéaire connexe dès qu’elle vaut pour les espaces homogènes de $\text{SL}_{n}$ à stabilisateur fini. Nous réduisons notamment à ce cas particulier la vérification d’une importante conjecture de Colliot-Thélène sur l’obstruction de Brauer–Manin au principe de Hasse et à l’approximation faible. Des travaux récents de Harpaz et Wittenberg montrent que le résultat principal s’applique également à la conjecture analogue (dite conjecture (E)) pour les zéro-cycles.
In this article we construct a p-adic three-dimensional eigenvariety for the group $U$(2,1)($E$), where $E$ is a quadratic imaginary field and $p$ is inert in $E$. The eigenvariety parametrizes Hecke eigensystems on the space of overconvergent, locally analytic, cuspidal Picard modular forms of finite slope. The method generalized the one developed in Andreatta, Iovita and Stevens [$p$-adic families of Siegel modular cuspforms Ann. of Math. (2) 181, (2015), 623–697] by interpolating the coherent automorphic sheaves when the ordinary locus is empty. As an application of this construction, we reprove a particular case of the Bloch–Kato conjecture for some Galois characters of $E$, extending the results of Bellaiche and Chenevier to the case of a positive sign.
In this paper, we prove that the set of all $F$-pure thresholds on a fixed germ of a strongly $F$-regular pair satisfies the ascending chain condition. As a corollary, we verify the ascending chain condition for the set of all $F$-pure thresholds on smooth varieties or, more generally, on varieties with tame quotient singularities, which is an affirmative answer to a conjecture given by Blickle, Mustaţǎ and Smith.
We develop the analog of crystalline Dieudonné theory for $p$-divisible groups in the arithmetic of function fields. In our theory $p$-divisible groups are replaced by divisible local Anderson modules, and Dieudonné modules are replaced by local shtukas. We show that the categories of divisible local Anderson modules and of effective local shtukas are anti-equivalent over arbitrary base schemes. We also clarify their relation with formal Lie groups and with global objects like Drinfeld modules, Anderson’s abelian $t$-modules and $t$-motives, and Drinfeld shtukas. Moreover, we discuss the existence of a Verschiebung map and apply it to deformations of local shtukas and divisible local Anderson modules. As a tool we use Faltings’s and Abrashkin’s theories of strict modules, which we review briefly.
A polarized variety is K-stable if, for any test configuration, the Donaldson–Futaki invariant is positive. In this paper, inspired by classical geometric invariant theory, we describe the space of test configurations as a limit of a direct system of Tits buildings. We show that the Donaldson–Futaki invariant, conveniently normalized, is a continuous function on this space. We also introduce a pseudo-metric on the space of test configurations. Recall that K-stability can be enhanced by requiring that the Donaldson–Futaki invariant is positive on any admissible filtration of the co-ordinate ring. We show that admissible filtrations give rise to Cauchy sequences of test configurations with respect to the above mentioned pseudo-metric.
We exhibit invariants of smooth projective algebraic varieties with integer values, whose nonvanishing modulo $p$ prevents the existence of an action without fixed points of certain finite $p$-groups. The case of base fields of characteristic $p$ is included. Counterexamples are systematically provided to test the sharpness of our results.
We describe all degenerations of three-dimensional anticommutative algebras $\mathfrak{A}\mathfrak{c}\mathfrak{o}\mathfrak{m}_{3}$ and of three-dimensional Leibniz algebras $\mathfrak{L}\mathfrak{e}\mathfrak{i}\mathfrak{b}_{3}$ over $\mathbb{C}$. In particular, we describe all irreducible components and rigid algebras in the corresponding varieties.
According to a well-known theorem of Serre and Tate, the infinitesimal deformation theory of an abelian variety in positive characteristic is equivalent to the infinitesimal deformation theory of its Barsotti–Tate group. We extend this result to 1-motives.
Let $X:=\mathbb{A}_{R}^{n}$ be the $n$-dimensional affine space over a discrete valuation ring $R$ with fraction field $K$. We prove that any pointed torsor $Y$ over $\mathbb{A}_{K}^{n}$ under the action of an affine finite-type group scheme can be extended to a torsor over $\mathbb{A}_{R}^{n}$ possibly after pulling $Y$ back over an automorphism of $\mathbb{A}_{K}^{n}$. The proof is effective. Other cases, including $X=\unicode[STIX]{x1D6FC}_{p,R}$, are also discussed.
Let U be the unipotent radical of a Borel subgroup of a connected reductive algebraic group G, which is defined over an algebraically closed field k. In this paper, we extend work by Goodwin and Röhrle concerning the commuting variety of Lie(U) for Char(k) = 0 to fields whose characteristic is good for G.
A general conjecture is stated on the cone of automorphic vector bundles admitting nonzero global sections on schemes endowed with a smooth, surjective morphism to a stack of $G$-zips of connected Hodge type; such schemes should include all Hodge-type Shimura varieties with hyperspecial level. We prove our conjecture for groups of type $A_{1}^{n}$, $C_{2}$, and $\mathbf{F}_{p}$-split groups of type $A_{2}$ (this includes all Hilbert–Blumenthal varieties and should also apply to Siegel modular $3$-folds and Picard modular surfaces). An example is given to show that our conjecture can fail for zip data not of connected Hodge type.
This paper is dedicated to a problem raised by Jacquet Tits in 1956: the Weyl group of a Chevalley group should find an interpretation as a group over what is nowadays called $\mathbb{F}_{1}$, the field with one element. Based on Part I of The geometry of blueprints, we introduce the class of Tits morphisms between blue schemes. The resulting Tits category$\text{Sch}_{{\mathcal{T}}}$ comes together with a base extension to (semiring) schemes and the so-called Weyl extension to sets. We prove for ${\mathcal{G}}$ in a wide class of Chevalley groups—which includes the special and general linear groups, symplectic and special orthogonal groups, and all types of adjoint groups—that a linear representation of ${\mathcal{G}}$ defines a model $G$ in $\text{Sch}_{{\mathcal{T}}}$ whose Weyl extension is the Weyl group $W$ of ${\mathcal{G}}$. We call such models Tits–Weyl models. The potential of Tits–Weyl models lies in (a) their intrinsic definition that is given by a linear representation; (b) the (yet to be formulated) unified approach towards thick and thin geometries; and (c) the extension of a Chevalley group to a functor on blueprints, which makes it, in particular, possible to consider Chevalley groups over semirings. This opens applications to idempotent analysis and tropical geometry.
The work is devoted to the variety of two-dimensional algebras over algebraically closed fields. First we classify such algebras modulo isomorphism. Then we describe the degenerations and the closures of certain algebra series in the variety of two-dimensional algebras. Finally, we apply our results to obtain analogous descriptions for the subvarieties of flexible and bicommutative algebras. In particular, we describe rigid algebras and irreducible components for these subvarieties.
In this paper we establish Springer correspondence for the symmetric pair $(\text{SL}(N),\text{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaf construction. As an application of our results we see that the cohomology of Hessenberg varieties can be expressed in terms of irreducible representations of Hecke algebras of symmetric groups at $q=-1$. Conversely, we see that the irreducible representations of Hecke algebras of symmetric groups at $q=-1$ arise in geometry.
The Dieudonné crystal of a $p$-divisible group over a semiperfect ring $R$ can be endowed with a window structure. If $R$ satisfies a boundedness condition, this construction gives an equivalence of categories. As an application we obtain a classification of $p$-divisible groups and commutative finite locally free $p$-group schemes over perfectoid rings by Breuil–Kisin–Fargues modules if $p\geqslant 3$.
Let $U$ be an affine smooth curve defined over an algebraically closed field of positive characteristic. The Abhyankar conjecture (proved by Raynaud and Harbater in 1994) describes the set of finite quotients of Grothendieck’s étale fundamental group $\unicode[STIX]{x1D70B}_{1}^{\acute{\text{e}}\text{t}}(U)$. In this paper, we consider a purely inseparable analogue of this problem, formulated in terms of Nori’s profinite fundamental group scheme $\unicode[STIX]{x1D70B}^{N}(U)$, and give a partial answer to it.
When $p>2$, we construct a Hodge-type analogue of Rapoport–Zink spaces under the unramifiedness assumption, as formal schemes parametrizing ‘deformations’ (up to quasi-isogeny) of $p$-divisible groups with certain crystalline Tate tensors. We also define natural rigid analytic towers with expected extra structure, providing more examples of ‘local Shimura varieties’ conjectured by Rapoport and Viehmann.
We show that the anti-canonical volume of an $n$-dimensional Kähler–Einstein $\mathbb{Q}$-Fano variety is bounded from above by certain invariants of the local singularities, namely $\operatorname{lct}^{n}\cdot \operatorname{mult}$ for ideals and the normalized volume function for real valuations. This refines a recent result by Fujita. As an application, we get sharp volume upper bounds for Kähler–Einstein Fano varieties with quotient singularities. Based on very recent results by Li and the author, we show that a Fano manifold is K-semistable if and only if a de Fernex–Ein–Mustaţă type inequality holds on its affine cone.
Colmez [Périodes des variétés abéliennes a multiplication complexe, Ann. of Math. (2)138(3) (1993), 625–683; available at http://www.math.jussieu.fr/∼colmez] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at $s=0$ of certain Artin $L$-functions. In a series of articles we investigate the analog of Colmez’s theory in the arithmetic of function fields. There abelian varieties are replaced by Drinfeld modules and their higher-dimensional generalizations, so-called $A$-motives. In the present article we prove the product formula for the Carlitz module and we compute the valuations of the periods of a CM $A$-motive at all finite places in terms of Artin $L$-series. The latter is achieved by investigating the local shtukas associated with the $A$-motive.