To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we develop a new technique for showing that a nonlinear algebraic differential equation is strongly minimal based on the recently developed notion of the degree of non-minimality of Freitag and Moosa. Our techniques are sufficient to show that generic order $h$ differential equations with non-constant coefficients are strongly minimal, answering a question of Poizat (1980).
Let $M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$ denote the matrix multiplication tensor (and write $M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$), and let $\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$ denote the determinant polynomial considered as a tensor. For a tensor T, let $\underline {\mathbf {R}}(T)$ denote its border rank. We (i) give the first hand-checkable algebraic proof that $\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$, (ii) prove $\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$ and $\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was $M_{\langle 2\rangle }$, (iii) prove $\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$, (iv) prove $\underline {\mathbf {R}}(\operatorname {det}_3)=17$, improving the previous lower bound of $12$, (v) prove $\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$ for all $\mathbf {n}\geq 25$, where previously only $\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$ was known, as well as lower bounds for $4\leq \mathbf {n}\leq 25$, and (vi) prove $\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$ for all $\mathbf {n} \ge 18$, where previously only $\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$ was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors.
The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, called border apolarity developed by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensor T and an integer r, in a finite number of steps, either outputs that there is no border rank r decomposition for T or produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable when T has a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.
We first provide a detailed proof of Kato’s classification theorem of log p-divisible groups over a Noetherian Henselian local ring. Exploring Kato’s idea further, we then define the notion of a standard extension of a classical finite étale group scheme (resp. classical étale p-divisible group) by a classical finite flat group scheme (resp. classical p-divisible group) in the category of finite Kummer flat group log schemes (resp. log p-divisible groups), with respect to a given chart on the base. These results are then used to prove that log p-divisible groups are formally log smooth. We then study the finite Kummer flat group log schemes $T_n(\mathbf {M}):=H^{-1}(\mathbf {M}\otimes _{{\mathbb Z}}^L{\mathbb Z}/n{\mathbb Z})$ (resp. the log p-divisible group $\mathbf {M}[p^{\infty }]$) of a log 1-motive $\mathbf {M}$ over an fs log scheme and show that they are étale locally standard extensions. Lastly, we give a proof of the Serre–Tate theorem for log abelian varieties with constant degeneration.
Let $G$ be a reductive group over an algebraically closed field $k$ of separably good characteristic $p>0$ for $G$. Under these assumptions, a Springer isomorphism $\phi : \mathcal {N}_{\mathrm {red}}(\mathfrak {g}) \rightarrow \mathcal {V}_{\mathrm {red}}(G)$ from the nilpotent scheme of $\mathfrak {g}$ to the unipotent scheme of $G$ always exists and allows one to integrate any $p$-nilpotent element of $\mathfrak {g}$ into a unipotent element of $G$. One should wonder whether such a punctual integration can lead to an integration of restricted $p$-nil $p$-subalgebras of $\mathfrak {g}= \operatorname {Lie}(G)$. We provide a counter-example of the existence of such an integration in general, as well as criteria to integrate some restricted $p$-nil $p$-subalgebras of $\mathfrak {g}$ (that are maximal in a certain sense). This requires the generalisation of the notion of infinitesimal saturation first introduced by Deligne and the extension of one of his theorems on infinitesimally saturated subgroups of $G$ to the previously mentioned framework.
Let $W = \mathbb {C}[t,t^{-1}]\partial _t$ be the Witt algebra of algebraic vector fields on $\mathbb {C}^\times$ and let $V\!ir$ be the Virasoro algebra, the unique nontrivial central extension of $W$. In this paper, we study the Poisson ideal structure of the symmetric algebras of $V\!ir$ and $W$, as well as several related Lie algebras. We classify prime Poisson ideals and Poisson primitive ideals of $\operatorname {S}(V\!ir)$ and $\operatorname {S}(W)$. In particular, we show that the only functions in $W^*$ which vanish on a nontrivial Poisson ideal (that is, the only maximal ideals of $\operatorname {S}(W)$ with a nontrivial Poisson core) are given by linear combinations of derivatives at a finite set of points; we call such functions local. Given a local function $\chi \in W^*$, we construct the associated Poisson primitive ideal through computing the algebraic symplectic leaf of $\chi$, which gives a notion of coadjoint orbit in our setting. As an application, we prove a structure theorem for subalgebras of $V\!ir$ of finite codimension and show, in particular, that any such subalgebra of $V\!ir$ contains the central element $z$, substantially generalising a result of Ondrus and Wiesner on subalgebras of codimension one. As a consequence, we deduce that $\operatorname {S}(V\!ir)/(z-\zeta )$ is Poisson simple if and only if $\zeta \neq ~0$.
We generalize the works of Pappas–Rapoport–Zhu on twisted affine Grassmannians to the wildly ramified case under mild assumptions. This rests on a construction of certain smooth affine $\mathbb {Z}[t]$-groups with connected fibers of parahoric type, motivated by previous work of Tits. The resulting $\mathbb {F}_p(t)$-groups are pseudo-reductive and sometimes non-standard in the sense of Conrad–Gabber–Prasad, and their $\mathbb {F}_p [\hspace {-0,5mm}[ {t} ]\hspace {-0,5mm}] $-models are parahoric in a generalized sense. We study their affine Grassmannians, proving normality of Schubert varieties and Zhu’s coherence theorem.
Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera $\overline P_1(V)$, $\overline P_2(V)$ and $\overline P_3(V)$ are equal to 1 and the logarithmic irregularity $\overline q(V)$ is equal to $2$. We prove that the quasi-Albanese morphism $a_V\colon V\to A(V)$ is birational and there exists a finite set S such that $a_V$ is proper over $A(V)\setminus S$, thus giving a sharp effective version of a classical result of Iitaka [12].
We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES129 (2019), 199–310), a category $\mathrm {DM}^{\mathrm {adm}}(R)$ of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over R to $\mathrm {DM}^{\mathrm {adm}}(R)$. We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.
An affine variety with an action of a semisimple group G is called “small” if every nontrivial G-orbit in X is isomorphic to the orbit of a highest weight vector. Such a variety X carries a canonical action of the multiplicative group ${\mathbb {K}^{*}}$ commuting with the G-action. We show that X is determined by the ${\mathbb {K}^{*}}$-variety $X^U$ of fixed points under a maximal unipotent subgroup $U \subset G$. Moreover, if X is smooth, then X is a G-vector bundle over the algebraic quotient $X /\!\!/ G$.
If G is of type ${\mathsf {A}_n}$ ($n\geq 2$), ${\mathsf {C}_{n}}$, ${\mathsf {E}_{6}}$, ${\mathsf {E}_{7}}$, or ${\mathsf {E}_{8}}$, we show that all affine G-varieties up to a certain dimension are small. As a consequence, we have the following result. If $n \geq 5$, every smooth affine $\operatorname {\mathrm {SL}}_n$-variety of dimension $< 2n-2$ is an $\operatorname {\mathrm {SL}}_n$-vector bundle over the smooth quotient $X /\!\!/ \operatorname {\mathrm {SL}}_n$, with fiber isomorphic to the natural representation or its dual.
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups: ${\mathfrak{A}}_5$, ${\text{PSL}}_2(\textbf{F}_7)$, ${\mathfrak{A}}_6$, ${\text{SL}}_2(\textbf{F}_8)$, ${\mathfrak{A}}_7$, ${\text{PSp}}_4(\textbf{F}_3)$, ${\text{SL}}_2(\textbf{F}_{7})$, $2.{\mathfrak{A}}_5$, $2.{\mathfrak{A}}_6$, $3.{\mathfrak{A}}_6$ or $6.{\mathfrak{A}}_6$. All of these groups with a possible exception of $2.{\mathfrak{A}}_6$ and $6.{\mathfrak{A}}_6$ indeed act on some rationally connected threefolds.
In their renowned paper (2011, Inventiones Mathematicae 184, 591–627), I. Vollaard and T. Wedhorn defined a stratification on the special fiber of the unitary unramified PEL Rapoport–Zink space with signature $(1,n-1)$. They constructed an isomorphism between the closure of a stratum, called a closed Bruhat–Tits stratum, and a Deligne–Lusztig variety which is not of classical type. In this paper, we describe the $\ell $-adic cohomology groups over $\overline {{\mathbb Q}_{\ell }}$ of these Deligne–Lusztig varieties, where $\ell \not = p$. The computations involve the spectral sequence associated with the Ekedahl–Oort stratification of a closed Bruhat–Tits stratum, which translates into a stratification by Coxeter varieties whose cohomology is known. Eventually, we find out that the irreducible representations of the finite unitary group which appear inside the cohomology contribute to only two different unipotent Harish-Chandra series, one of them belonging to the principal series.
We develop the formalism of universal torsors in equivariant birational geometry and apply it to produce new examples of nonbirational but stably birational actions of finite groups.
We compute the number of points over finite fields of the character stack associated to a compact surface group and a reductive group with connected centre. We find that the answer is a polynomial on residue classes (PORC). The key ingredients in the proof are Lusztig’s Jordan decomposition of complex characters of finite reductive groups and Deriziotis’s results on their genus numbers. As a consequence of our main theorem, we obtain an expression for the E-polynomial of the character stack.
In characteristic $0$, symplectic automorphisms of K3 surfaces (i.e., automorphisms preserving the global $2$-form) and non-symplectic ones behave differently. In this paper, we consider the actions of the group schemes $\mu _{n}$ on K3 surfaces (possibly with rational double point [RDP] singularities) in characteristic p, where n may be divisible by p. We introduce the notion of symplecticness of such actions, and we show that symplectic $\mu _{n}$-actions have similar properties, such as possible orders, fixed loci, and quotients, to symplectic automorphisms of order n in characteristic $0$. We also study local $\mu _n$-actions on RDPs.
We show that the image of a subshift X under various injective morphisms of symbolic algebraic varieties over monoid universes with algebraic variety alphabets is a subshift of finite type, respectively a sofic subshift, if and only if so is X. Similarly, let G be a countable monoid and let A, B be Artinian modules over a ring. We prove that for every closed subshift submodule $\Sigma \subset A^G$ and every injective G-equivariant uniformly continuous module homomorphism $\tau \colon \! \Sigma \to B^G$, a subshift $\Delta \subset \Sigma $ is of finite type, respectively sofic, if and only if so is the image $\tau (\Delta )$. Generalizations for admissible group cellular automata over admissible Artinian group structure alphabets are also obtained.
In this paper, we study sample size thresholds for maximum likelihood estimation for tensor normal models. Given the model parameters and the number of samples, we determine whether, almost surely, (1) the likelihood function is bounded from above, (2) maximum likelihood estimates (MLEs) exist, and (3) MLEs exist uniquely. We obtain a complete answer for both real and complex models. One consequence of our results is that almost sure boundedness of the log-likelihood function guarantees almost sure existence of an MLE. Our techniques are based on invariant theory and castling transforms.
Let $p$ be a rational prime, let $F$ denote a finite, unramified extension of ${{\mathbb {Q}}}_p$, let $K$ be the maximal unramified extension of ${{\mathbb {Q}}}_p$, ${{\overline {K}}}$ some fixed algebraic closure of $K$, and ${{\mathbb {C}}}_p$ be the completion of ${{\overline {K}}}$. Let $G_F$ be the absolute Galois group of $F$. Let $A$ be an abelian variety defined over $F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map $\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor $T_p(A)$ with ${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if $T_p(A)^{G_K} = 0$, then $\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of $A$ and show that if $T_p(A)^{G_K} = 0$, then $A(\overline {K})$ has a type of $p$-adic uniformization, which resembles the classical complex uniformization.
The Grothendieck–Serre conjecture predicts that every generically trivial torsor under a reductive group scheme G over a regular local ring R is trivial. We settle it in the case when G is quasi-split and R is unramified. Some of the techniques that allow us to overcome obstacles that have so far kept the mixed characteristic case out of reach include a version of Noether normalization over discrete valuation rings, as well as a suitable presentation lemma for smooth relative curves in mixed characteristic that facilitates passage to the relative affine line via excision and patching.
We study model theory of fields with actions of a fixed finite group scheme. We prove the existence and simplicity of a model companion of the theory of such actions, which generalizes our previous results about truncated iterative Hasse–Schmidt derivations [13] and about Galois actions [14]. As an application of our methods, we obtain a new model complete theory of actions of a finite group on fields of finite imperfection degree.