To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
John W. Moon has discovered several computational errors in our article above (J. Austral. Math. Soc. (Series A) 20 (1975), 483–503). The five constants reported for identity trees below Table 1 at the bottom of page 502 are all wrong. The correct values are
An eulerian chain in a directed graph is a continuous directed route which traces every arc of the digraph exactly once. Such a route may be finite or infinite, and may have 0, 1 or 2 end vertices. For each kind of eulerian chain, there is a characterization of those diagraphs possessing such a route. In this survey paper we strealine these characterizations, and then synthesize them into a single description of all digraphs having some eulerian chain. Similar work has been done for eulerian chains in undirected graphs, so we are able to compare corresponding results for graphs and digraphs.
A near 1-factor of a graph of order 2n ≧ 4 is a subgraph isomorphic to (n − 2) K2 ∪ P3 ∪ K1. Wallis determined, for each r ≥ 3, the order of a smallest r-regular graph of even order without a 1-factor; while for each r ≧ 3, Chartrand, Goldsmith and Schuster determined the order of a smallest r-regular, (r − 2)-edge-connected graph of even order without a 1-factor. These results are extended to graphs without near 1-factors. It is known that every connected, cubic graph with less than six bridges has a near 1-factor. The order of a smallest connected, cubic graph with exactly six bridges and no near 1-factor is determined.
Alspach and Sutcliffe call a graph X(S, q, F) 2-circulant if it consists of two isomorphic copies of circulant graphs X(p, S) and X(p, qS) on p vertices with “cross-edges” joining one another in a prescribed manner. In this paper, we enumerate the nonisomorphic classes of 2-circulant graphs X(S, q, F) such that |S| = m and |F| = k. We also determine a necessary and sufficient condition for a 2-circulant graph to be a GRR. The nonisomorphic classes of GRR on 2p vertices are also enumerated.
It has been known for over twenty years that every planar graph is Pfaffian. Recently a characterisation of planar graphs in terms of strict maximal odd rings has been discovered. This paper attempts to elucidate the connection between the Pfaffian property and planarity by characterising Pfaffian bipartite graphs in terms of maximal odd rings.
Suppose that in a complete graph on N points, each edge is given arbitrarily either the color red or the color blue, but the total number of blue edges is fixed at T. We find the minimum number of monochromatic triangles in the graph as a function of N and T. The maximum number of monochromatic triangles presents a more difficult problem. Here we propose a reasonable conjecture supported by examples.
A chordal graph is a graph in which every cycle of length at least 4 has a chord. If G is a random n-vertex labelled chordal graph, the size of the larget clique in about n/2 and deletion of this clique almost surely leaves only isolated vertices. This gives the asymptotic number of chordal graphs and information about a variety of things such as the size of the largest clique and connectivity.
Let Γ be a graph with isomorphic subgraphs G and H, and let θ: G → H be an isomorphism. If θ can be extended to an automorphism of Γ, we call θ a partial automorphism of Γ.
We consider the application of partial automorphisms to the graph reconstruction conjecture, in particular, to the problem of reconstructing graphs with two vertices of degree k – 1 and the remaining vertices of degree k.
Vertices u0, u1, …, uk−1 of a graph X are mutually pseudo-similar if X − u0 ≌ X − u1 ≌ … ≌ X − uk−1, but no two of the vertices are related by an automorphism of X. We describe a method for constructing graphs with a set of k≥2 mutually pseudo-similar vertices, using a group with a special subgroup. We show that in all graphs with pseudo-similar vertices, the vertices are pseudo-similar due to the action of a group on the cosets of some subgroup.
Vertices u and v of a graph G are pseudo-similar if G – u ≅ G – v, but no automorphisms of G maps u to v. Let H be a graph with a distinguished vertex a. Denote by G(u. H) and G(v. H) the graphs obtained from G and H by identifying vertex a of H with pseudo-similar vertices u and v, respectively, of G. Is it possible for G(u.H) and G(v.H) to be isomorphic graphs? We answer this question in the affirmative by constructing graphs G for which G(u. H)≅ G(v. H).
We define and investigate the notion of a decomposable hypergraph, showing that such a hypergraph always is conformal, that is, can be viewed as the class of maximal cliques of a graph. We further show that the clique hypergraph of a graph is decomposable if and only if the graph is triangulated and characterise such graphs in terms of a combinatorial identity.
An undirected simple graph G is called chordal if every circle of G of length greater than 3 has a chord. For a chordal graph G, we prove the following: (i) If m is an odd positive integer, Gm is chordal. (ii) If m is an even positive integer and if Gm is not chordal, then none of the edges of any chordless cycle of Gm is an edge of Gr, r < m.
Let the word “graph” be used in the sense of a countable, connected, simple graph with at least one vertex. We write Qn and Ocn for the graphs associated with the n-cube Qn and the n-octahedron Ocn respectively. In a previous paper (Dekker, 1981) we generalized Qn and Qn to a graph QN and a cube QN, for any nonzero recursive equivalence type N. In the present paper we do the same for Ocn and Ocn. We also examine the nature of the duality between QN and OcN, in case N is an infinite isol. There are c RETs, c denoting the cardinality of the continuum.
A permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.
S. T. Hedetniemi and P. J. Slater have shown that if G is a triangle-free connected graph with at least three vertices, then
where K(G) is the clique graph of G and K2(G) = K(K(G)) is the first iterated clique graph. In this paper, we generalize the above result to a wider class of graphs.
We determine the limiting distribution of the distance from the root of a tree to any nearest endnode of the tree (other than the root) for certain families of rooted trees.
We show that the problem of settling the existence of an n × n Hadamard matrix, where n is divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the complete bipartite graph K n, n, such that T contains at least one circuit of each copy of K2,3 in Kn, n.
Let t, m > 2 and p > 2 be positive integers and denote by N(t, m, p) the largest integer for which there exists a t-uniform hypergraph with N (not necessarily distinct) edges and having no independent set of edges of size m and no vertex of degree exceeding p. In this paper we complete the determination of N(t, m, 3) and obtain some new bounds on N(t, 2, p).
We discuss the problem of constructing large graceful trees from smaller ones and provide a partial answer in the case of the product tree Sm {g} by way of a sample of sufficient conditions on g. Interlaced trees play an important role as building blocks in our constructions, although the resulting valuations are not always interlaced.
We are interested here in the Ramsey number r(T, C), where C is a complete k-uniform hypergraph and T is a “tree-like” k-graph. Upper and lower bounds are found for these numbers which lead, in some cases, to the exact value for r(T, C) and to a generalization of a theorem of Chváta1 on Ramsey numbers for graphs. In other cases we show that a determination of the exact values of r(T, C) would be equivalent to obtaining a complete solution to existence question for a certain class of Steiner systems.