To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Assume G is a graph with m edges. By T(n, G) we denote the classical Turan number, namely, the maximum possible number of edges in a graph H on n vertices without a copy of G. Similarly if G is a family of graphs then H does not have a copy of any member of the family. A Zk-colouring of a graph G is a colouring of the edges of G by Zk, the additive group of integers modulo k, avoiding a copy of a given graph H, for which the sum of the values on its edges is 0 (mod k). By the Zero-Sum Turan number, denoted T(n, G, Zk), k¦m, we mean the maximum number of edges in a Zk-colouring of a graph on n vertices that contains no zero-sum (mod k) copy of G. Here we mainly solve two problems of Bialostocki and Dierker [6].
Problem 1. Determine T(n, tK2, Zk) for ¦|t. In particular, is it true that T(n, tK2, Zk) = T(n, (t+k-1)K2)?
Problem 2. Does there exist a constant c(t, k) such that T(n, Ft, Zk) ≦ c(t, k)n, where Ft is the family of cycles of length at least t?
We prove Theorem 1: suppose G is a simple graph of order n having Δ(G) = n − k where k ≥ 5 and n ≥ max (13, 3k −3). If G contains an independent set of k − 3 vertices, then the TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is true for any simple graph G of order n having Δ(G) = n −5. The latter result together with some earlier results confirm that the TCC is true for all simple graphs whose maximum degree is at most four and for all simple graphs of order n having maximum degree at least n − 5.
The dependence of coincidence of the global, local and pairwise Markov properties on the underlying undirected graph is examined. The pairs of these properties are found to be equivalent for graphs with some small excluded subgraphs. Probabilistic representations of the corresponding conditional independence structures are discussed.
Denote by Sn the set of all distinct rooted trees with n labeled vertices. Define τn as the total height of a tree chosen at random in the set Sn, assuming that all the possible nn–1 choices are equally probable. The total height of a tree is defined as the sum of the heights of its vertices. The height of a vertex in a rooted tree is the distance from the vertex to the root of the tree, that is, the number of edges in the path from the vertex to the root. This paper is concerned with the distribution and the moments of τn and their asymptotic behavior as n → ∞.
A complementary decomposition of λKn into a graph G is an edge-disjoint decomposition of λKn into copies of G such that if each copy H of G is replaced by its complement in V(H) then the result is an edge-disjoint decomposition of λKn into copies of GC it is a self- complementary decomposition if G = Gc. The spectrum for the last self-complementary graph on at most 7 vertices is found.
The distribution (1) used previously by the author to represent polymerisation of several types of unit also prescribes quite general statistics for a random field on a random graph. One has the integral expression (3) for its partition function, but the multiple complex form of the integral makes the nature of the expected saddlepoint evaluation in the thermodynamic limit unclear. It is shown in Section 4 that such an evaluation at a real positive saddlepoint holds, and subsidiary conditions narrowing down the choice of saddlepoint are deduced in Section 6. The analysis simplifies greatly in what is termed the semi-coupled case; see Sections 3, 5 and 7. In Section 8 the analysis is applied to an Ising model on a random graph of fixed degree r + 1. The Curie point of this model is found to agree with that deduced by Spitzer for an Ising model on an r-branching tree. This agreement strengthens the conclusion of ‘locally tree-like' behaviour of the graph, seen as an important property in a number of contexts.
Pfaffian graphs are those which can be oriented so that the 1-factors have equal sign, as calculated according to the prescription of Kasteleyn. We consider various operations on graphs and examine their effect on the Pfaffian property. We show that the study of Pfaffian graphs may be reduced to the case of subcubic graphs (graphs in which no vertex has degree greater than 3) or bricks (3-connected bicritical graphs).
It is well-known that if G is a multigraph (that is, a graph with multiple edges), the maximum number of pairwise disjoint edges in G is ν(G) and its maximum degree is D(G), then |E(G)| ≤ ν [3D/2’. We extend this theorem for r-graphs (that is, families of r-element sets) and for r-multihypergraphs (that is, r-graphs with repeated edges). Several problems remain open.
This paper classifies all finite connected 4- and 5-arc-transitive cubic graphs that contain circuits of length less than or equal to 11, or of length 13, and some of those graphs with circuits of length 12.
The usual definition for vertex-criticality with respect to the chromatic index is that a multigraph G is vertex-critical if G is Class 2, connected, and χ'(G\υ) <χ'(G) for all υ ε V(G). We consider here an allied notion, that of vertex-criticality with respect to the chromatic class–in this case G is vertex critical if G is Class 2 and connected, but G\υ is Class 1 for all υ ε V(G). We also investigate the analogues of these two notions for edge-criticality.
Using a new proof technique of the first author (by adding a new vertex to a graph and creating a total colouring of the old graph from an edge colouring of the new graph), we prove that the TCC (Total Colouring Conjecture) is true for any graph G of order n having maximum degree at least n - 4. These results together with some earlier results of M. Rosenfeld and N. Vijayaditya (who proved that the TCC is true for graphs having maximum degree at most 3), and A. V. Kostochka (who proved that the TCC is true for graphs having maximum degree 4) confirm that the TCC is true for graphs whose maximum degree is either very small or very big.
Two graphs, the edge crossing graph E and the triangle graph T are associated with a simple lattice polygon. The maximal independent sets of vertices of E and T are derived including a formula for the size of the fundamental triangles. Properties of E and T are derived including a formula for the size of the maximal independent sets in E and T. It is shown that T is a factor graph of edge-disjoint 4-cycles, which gives corresponding geometric information, and is a partition graph as recently defined by the authors and F. Harary.
An induced subgraph H of connectivity (edge-connectivity) n in a graph G is a major n-connected (major n-edge-connected) subgraph of G if H contains no subgraph with connectivity (edge- connectivity) exceeding n and H has maximum order with respect to this property. An induced subgraph is a major (major edge-) subgraph if it is a major n-connected (major n-edge-connected) subgraph for some n. Let m be the maximum order among all major subgraphs of C. Then the major connectivity set K(G) of G is defined as the set of all n for which there exists a major n-connected subgraph of G having order m. The major edge-connectivity set is defined analogously. The connectivity and the elements of the major connectivity set of a graph are compared, as are the elements of the major connectivity set and the major edge-connectivity set of a graph. It is shown that every set S of nonnegative integers is the major connectivity set of some graph G. Further, it is shown that for each positive integer m exceeding every element of S, there exists a graph G such that every major k-connected subgraph of G, where k ∈ K(G), has order m. Moreover, upper and lower bounds on the order of such graphs G are established.
It is shown that if an interval graph possesses a maximal-clique partition then its clique covering and clique partition numbers are equal, and equal to the maximal-clique partition number. Moreover an interval graph has such a partition if and only if all its maximal cliques are edge-disjoint.
Let Gbe a primitive permutation group on a finite set Ω. We investigate the subconstitutents of G, that is the permutation groups induced by a point stabilizer on its orbits in Ω, in the cases where Ghas a diagonal action or a product action on Ω. In particular we show in these cases that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent we show that G has a unique minimal normal subgroup N and either N is a nonabelian simple group or N acts regularly on Ω: we investigate further the case where N is regular on Ω.
In this paper we show that every finite connected graph G = (V, E), without loops and for which its spanning trees are the blocks of a balanced incomplete block design on E containing more than one block (E is the set of edges), is vertex 2–connected.
A graph G is divisible by t if its edge set can be partitioned into t subsets, such that the subgraphs (called factors) induced by the subsets are all isomorphic. Such an edge partition is an isomorphic factorization. It is proved that a 2k-regular graph with an even number of vertices is divisble by 2k provided it contains either no 3-cycles or no 5-cycles. It is also shown that any 4-regular graph with an even number of vertices is divisible by 4. In both cases the components of the factors found are paths of length 1 and 2, and the factorizations can be constructed in polynomial time.
We address the problem of describing all graphs Γ such that Aut Γ is a symmetric group, subject to certain restrictions on the sizes of the orbits of Aut Γ on vertices. As a corollary of our general results, we obtain a classification of all graphs Γ on v vertices with Aut Γ ≅ Sn, where ν < min{5n, ½n(n – 1)}.
It is known that the problem of settling the existence of an n × n Hadamard matrix, where n is divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the complete bipartite graph Kn, n such that T contains at least one circuit of each copy of K2,3 in Kn, n. Here we investigate the case where n ≡ 2 (mod 4), and we show that the problem of finding the cardinality of T is equivalent to that of settling the existence of a certain kind of n × n matrix. Moreover, we show that the case where n ≡ 2 (mod 4) differs from that where n ≡ 0 (mod 4) in that the problem of finding the cardinality of T is not equivalent to that of maximising the determinant of an n × n (1,-1)-matrix.