To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Turán number ex(n, H) of a graph H is the maximal number of edges in an H-free graph on n vertices. In 1983, Chung and Erdős asked which graphs H with e edges minimise ex(n, H). They resolved this question asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer their question by resolving all remaining cases. Our result translates directly to the setting of universality, a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and Asodi.
Erdős asked if, for every pair of positive integers g and k, there exists a graph H having girth (H) = k and the property that every r-colouring of the edges of H yields a monochromatic cycle Ck. The existence of such graphs H was confirmed by the third author and Ruciński.
We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k. We show that there exists a graph H on R10k2; k15k3 vertices (where R = R(Ck; r) is the r-colour Ramsey number for the cycle Ck) having girth (H) = k and the Ramsey property that every r-colouring of the edges of H yields a monochromatic Ck Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.
The size-Ramsey number of a graph F is the smallest number of edges in a graph G with the Ramsey property for F, that is, with the property that any 2-colouring of the edges of G contains a monochromatic copy of F. We prove that the size-Ramsey number of the grid graph on n × n vertices is bounded from above by n3+o(1).
A family of vectors in [k]n is said to be intersecting if any two of its elements agree on at least one coordinate. We prove, for fixed k ≥ 3, that the size of any intersecting subfamily of [k]n invariant under a transitive group of symmetries is o(kn), which is in stark contrast to the case of the Boolean hypercube (where k = 2). Our main contribution addresses limitations of existing technology: while there are now methods, first appearing in work of Ellis and the third author, for using spectral machinery to tackle problems in extremal set theory involving symmetry, this machinery relies crucially on the interplay between up-sets, biased product measures, and threshold behaviour in the Boolean hypercube, features that are notably absent in the problem considered here. To circumvent these barriers, introducing ideas that seem of independent interest, we develop a variant of the sharp threshold machinery that applies at the level of products of posets.
It has been conjectured that, for any fixed \[{\text{r}} \geqslant 2\] and sufficiently large n, there is a monochromatic Hamiltonian Berge-cycle in every \[({\text{r}} - 1)\]-colouring of the edges of \[{\text{K}}_{\text{n}}^{\text{r}}\], the complete r-uniform hypergraph on n vertices. In this paper we prove this conjecture.
We use the model theoretic notion of coheir to give short proofs of old and new theorems in Ramsey Theory. As an illustration we start from Ramsey’s theorem itself. Then we prove Hindman’s theorem and the Hales–Jewett theorem. Finally, we prove two Ramsey theoretic principles that have among their consequences partition theorems due to Carlson and to Gowers.
The Corners theorem states that for any α > 0 there exists an N0 such that for any abelian group G with |G| = N ≥ N0 and any subset A ⊂ G×G with |A| ≥ αN2 we can find a corner in A, i.e. there exist x, y, d ∈ G with d ≠ 0 such that (x,y),(x+d,y),(x,y+d) ∈ A.
Here, we consider a stronger version, in which we try to find many corners of the same size. Given such a group G and subset A, for each d ∈ G we define Sd={(x,y) ∈ G × G: (x,y),(x+d,y),(x,y+d) ∈ A}. So |Sd| is the number of corners of size d. Is it true that, provided N is sufficiently large, there must exist some d ∈G\{0} such that |Sd|>(α3-ϵ)N2?
We answer this question in the negative. We do this by relating the problem to a much simpler-looking problem about random variables. Then, using this link, we show that there are sets A with |Sd|>Cα3.13N2 for all d ≠ 0, where C is an absolute constant. We also show that in the special case where $G = {\mathbb{F}}_2^n$, one can always find a d with |Sd|>(α4-ϵ)N2.
Let A be a finite set with , let n be a positive integer, and let $A^n$ denote the discrete $n\text {-dimensional}$ hypercube (that is, $A^n$ is the Cartesian product of n many copies of A). Given a family $\langle D_t:t\in A^n\rangle $ of measurable events in a probability space (a stochastic process), what structural information can be obtained assuming that the events $\langle D_t:t\in A^n\rangle $ are not behaving as if they were independent? We obtain an answer to this problem (in a strong quantitative sense) subject to a mild ‘stationarity’ condition. Our result has a number of combinatorial consequences, including a new (and the most informative so far) proof of the density Hales-Jewett theorem.
Bollobás and Riordan, in their paper ‘Metrics for sparse graphs’, proposed a number of provocative conjectures extending central results of quasirandom graphs and graph limits to sparse graphs. We refute these conjectures by exhibiting a sequence of graphs with convergent normalized subgraph densities (and pseudorandom C4-counts), but with no limit expressible as a kernel.
Let G be a simple graph that is properly edge-coloured with m colours and let \[\mathcal{M} = \{ {M_1},...,{M_m}\} \] be the set of m matchings induced by the colours in G. Suppose that \[m \leqslant n - {n^c}\], where \[c > 9/10\], and every matching in \[\mathcal{M}\] has size n. Then G contains a full rainbow matching, i.e. a matching that contains exactly one edge from Mi for each \[1 \leqslant i \leqslant m\]. This answers an open problem of Pokrovskiy and gives an affirmative answer to a generalization of a special case of a conjecture of Aharoni and Berger. Related results are also found for multigraphs with edges of bounded multiplicity, and for hypergraphs.
Finally, we provide counterexamples to several conjectures on full rainbow matchings made by Aharoni and Berger.
We prove that sets with positive upper Banach density in sufficiently large dimensions contain congruent copies of all sufficiently large dilates of three specific higher-dimensional patterns. These patterns are: 2n vertices of a fixed n-dimensional rectangular box, the same vertices extended with n points completing three-term arithmetic progressions, and the same vertices extended with n points completing three-point corners. Our results provide common generalizations of several Euclidean density theorems from the literature.
We prove a number of results related to a problem of Po-Shen Loh [9], which is equivalent to a problem in Ramsey theory. Let a = (a1, a2, a3) and b = (b1, b2, b3) be two triples of integers. Define a to be 2-less than b if ai < bi for at least two values of i, and define a sequence a1, …, am of triples to be 2-increasing if ar is 2-less than as whenever r < s. Loh asks how long a 2-increasing sequence can be if all the triples take values in {1, 2, …, n}, and gives a log* improvement over the trivial upper bound of n2 by using the triangle removal lemma. In the other direction, a simple construction gives a lower bound of n3/2. We look at this problem and a collection of generalizations, improving some of the known bounds, pointing out connections to other well-known problems in extremal combinatorics, and asking a number of further questions.
We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in place of the reals.
We prove that, for any $t \ge 3$, there exists a constant c = c(t) > 0 such that any d-regular n-vertex graph with the second largest eigenvalue in absolute value λ satisfying $\lambda \le c{d^{t - 1}}/{n^{t - 2}}$ contains vertex-disjoint copies of kt covering all but at most ${n^{1 - 1/(8{t^4})}}$ vertices. This provides further support for the conjecture of Krivelevich, Sudakov and Szábo (Combinatorica24 (2004), pp. 403–426) that (n, d, λ)-graphs with n ∈ 3ℕ and $\lambda \le c{d^2}/n$ for a suitably small absolute constant c > 0 contain triangle-factors. Our arguments combine tools from linear programming with probabilistic techniques, and apply them in a certain weighted setting. We expect this method will be applicable to other problems in the field.
We answer four questions from a recent paper of Rao and Shinkar [17] on Lipschitz bijections between functions from {0, 1}n to {0, 1}. (1) We show that there is no O(1)-bi-Lipschitz bijection from Dictator to XOR such that each output bit depends on O(1) input bits. (2) We give a construction for a mapping from XOR to Majority which has average stretch $O(\sqrt{n})$, matching a previously known lower bound. (3) We give a 3-Lipschitz embedding $\phi \colon\{0,1\}^n \to \{0,1\}^{2n+1}$ such that $${\rm{XOR }}(x) = {\rm{ Majority }}(\phi (x))$$ for all $x \in \{0,1\}^n$. (4) We show that with high probability there is an O(1)-bi-Lipschitz mapping from Dictator to a uniformly random balanced function.
Let I be a zero-dimensional ideal in the polynomial ring $K[x_1,\ldots ,x_n]$ over a field K. We give a bound for the number of roots of I in $K^n$ counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.
We give an example of two ordered structures $\mathcal {M},\mathcal {N}$ in the same language $\mathcal {L}$ with the same universe, the same order and admitting the same one-variable definable subsets such that $\mathcal {M}$ is a model of the common theory of o-minimal $\mathcal {L}$-structures and $\mathcal {N}$ admits a definable, closed, bounded, and discrete subset and a definable injective self-mapping of that subset which is not surjective. This answers negatively two question by Schoutens; the first being whether there is an axiomatization of the common theory of o-minimal structures in a given language by conditions on one-variable definable sets alone. The second being whether definable completeness and type completeness imply the pigeonhole principle. It also partially answers a question by Fornasiero asking whether definable completeness of an expansion of a real closed field implies the pigeonhole principle.
A k-permutation family on n vertices is a set-system consisting of the intervals of k permutations of the integers 1 to n. The discrepancy of a set-system is the minimum over all red–blue vertex colourings of the maximum difference between the number of red and blue vertices in any set in the system. In 2011, Newman and Nikolov disproved a conjecture of Beck that the discrepancy of any 3-permutation family is at most a constant independent of n. Here we give a simpler proof that Newman and Nikolov’s sequence of 3-permutation families has discrepancy $\Omega (\log \,n)$. We also exhibit a sequence of 6-permutation families with root-mean-squared discrepancy $\Omega (\sqrt {\log \,n} )$; that is, in any red–blue vertex colouring, the square root of the expected squared difference between the number of red and blue vertices in an interval of the system is $\Omega (\sqrt {\log \,n} )$.
Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then
$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$
In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then
$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$
for some constant c independent of d. This result is sharp in the sense that as $d \rightarrow \infty$, almost all d-regular n-vertex graphs G of girth at least five have
Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$, then ${\gamma_\circ}(G) = \frac{n}{2}$. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$. Therefore both the girth and regularity conditions are required for the main result.
A k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$. The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest.
For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$, there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$, every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$-tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.