We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fix a prime $p\geq 11$. We show that there exists a positive integer $m$ such that any subset of $\mathbb {F}_p^n\times \mathbb {F}_p^n$ containing no nontrivial configurations of the form $(x,y)$, $(x,y+z)$, $(x,y+2z)$, $(x+z,y)$ must have density $\ll 1/\log _{m}{n}$, where $\log _{m}$ denotes the $m$-fold iterated logarithm. This gives the first reasonable bound in the multidimensional Szemerédi theorem for a two-dimensional four-point configuration in any setting.
Given a fixed graph $H$ and a constant $c \in [0,1]$, we can ask what graphs $G$ with edge density $c$ asymptotically maximise the homomorphism density of $H$ in $G$. For all $H$ for which this problem has been solved, the maximum is always asymptotically attained on one of two kinds of graphs: the quasi-star or the quasi-clique. We show that for any $H$ the maximising $G$ is asymptotically a threshold graph, while the quasi-clique and the quasi-star are the simplest threshold graphs, having only two parts. This result gives us a unified framework to derive a number of results on graph homomorphism maximisation, some of which were also found quite recently and independently using several different approaches. We show that there exist graphs $H$ and densities $c$ such that the optimising graph $G$ is neither the quasi-star nor the quasi-clique (Day and Sarkar, SIAM J. Discrete Math. 35(1), 294–306, 2021). We also show that for $c$ large enough all graphs $H$ maximise on the quasi-clique (Gerbner et al., J. Graph Theory 96(1), 34–43, 2021), and for any $c \in [0,1]$ the density of $K_{1,2}$ is always maximised on either the quasi-star or the quasi-clique (Ahlswede and Katona, Acta Math. Hung. 32(1–2), 97–120, 1978). Finally, we extend our results to uniform hypergraphs.
A collection of graphs is nearly disjoint if every pair of them intersects in at most one vertex. We prove that if $G_1, \dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$, then the following holds. For every fixed $C$, if each vertex $v \in \bigcup _{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \dots, G_m$, then the (list) chromatic number of $\bigcup _{i=1}^m G_i$ is at most $D + o(D)$. This result confirms a special case of a conjecture of Vu and generalizes Kahn’s bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy and Postle, and we derive this result from a more general list colouring result in the setting of ‘colour degrees’ that also implies a result of Reed and Sudakov.
We show that for every $n\in \mathbb N$ and $\log n\le d\lt n$, if a graph $G$ has $N=\Theta (dn)$ vertices and minimum degree $(1+o(1))\frac{N}{2}$, then it contains a spanning subdivision of every $n$-vertex $d$-regular graph.
Let $\mathcal{F}$ be an intersecting family. A $(k-1)$-set $E$ is called a unique shadow if it is contained in exactly one member of $\mathcal{F}$. Let ${\mathcal{A}}=\{A\in \binom{[n]}{k}\colon |A\cap \{1,2,3\}|\geq 2\}$. In the present paper, we show that for $n\geq 28k$, $\mathcal{A}$ is the unique family attaining the maximum size among all intersecting families without unique shadow. Several other results of a similar flavour are established as well.
We demonstrate that the phenomenon of popular differences (aka the phenomenon of large intersections) holds for natural families of polynomial patterns in rings of integers of number fields. If K is a number field with ring of integers $\mathcal{O}_K$ and $E \subseteq \mathcal{O}_K$ has positive upper Banach density $d^*(E) = \delta > 0$, we show, inter alia:
(1) if $p(x) \in K[x]$ is an intersective polynomial (i.e., p has a root modulo m for every $m \in \mathcal{O}_K$) with $p(\mathcal{O}_K) \subseteq \mathcal{O}_K$ and $r, s \in \mathcal{O}_K$ are distinct and nonzero, then for any $\varepsilon > 0$, there is a syndetic set $S \subseteq \mathcal{O}_K$ such that for any $n \in S$,
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n)\} \subseteq E \right\} \right) > \delta^3 - \varepsilon. \end{align*}
Moreover, if ${s}/{r} \in \mathbb{Q}$, then there are syndetically many $n \in \mathcal{O}_K$ such that
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n), x + (r+s)p(n)\} \subseteq E \right\} \right)> \delta^4 - \varepsilon; \end{align*}
(2) if $\{p_1, \dots, p_k\} \subseteq K[x]$ is a jointly intersective family (i.e., $p_1, \dots, p_k$ have a common root modulo m for every $m \in \mathcal{O}_K$) of linearly independent polynomials with $p_i(\mathcal{O}_K) \subseteq \mathcal{O}_K$, then there are syndetically many $n \in \mathcal{O}_K$ such that
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + p_1(n), \dots, x + p_k(n)\} \subseteq E \right\} \right)> \delta^{k+1} - \varepsilon. \end{align*}
These two results generalise and extend previous work of Frantzikinakis and Kra [21] and Franztikinakis [19] on polynomial configurations in $\mathbb{Z}$ and build upon recent work of the authors and Best [2] on linear patterns in general abelian groups. The above combinatorial results follow from multiple recurrence results in ergodic theory via a version of Furstenberg’s correspondence principle. The ergodic-theoretic recurrence theorems require a sharpening of existing tools for handling polynomial multiple ergodic averages. A key advancement made in this paper is a new result on the equidistribution of polynomial orbits in nilmanifolds, which can be seen as a far-reaching generalisation of Weyl’s equidistribution theorem for polynomials of several variables:
(3) let $d, k, l \in \mathbb{N}$. Let $(X, \mathcal{B}, \mu, T_1, \dots, T_l)$ be an ergodic, connected $\mathbb{Z}^l$-nilsystem. Let $\{p_{i,j} \;:\; 1 \le i \le k, 1 \le j \le l\} \subseteq \mathbb{Q}[x_1, \dots, x_d]$ be a family of polynomials such that $p_{i,j}\left( \mathbb{Z}^d \right) \subseteq \mathbb{Z}$ and $\{1\} \cup \{p_{i,j}\}$ is linearly independent over $\mathbb{Q}$. Then the $\mathbb{Z}^d$-sequence $\left( \prod_{j=1}^l{T_j^{p_{1,j}(n)}}x, \dots, \prod_{j=1}^l{T_j^{p_{k,j}(n)}}x \right)_{n \in \mathbb{Z}^d}$ is well-distributed in $X^k$ for every x in a co-meager set of full measure.
Resolving a problem of Conlon, Fox and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their $2$-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erdős–Hajnal stepping-up lemma for a generalized Ramsey number $r_k(t;q,p)$, which we define as the smallest integer n such that every q-colouring of the k-sets on n vertices contains a set of t vertices spanning fewer than p colours. Our results provide the first tower-type lower bounds on these numbers.
We prove that any strongly mixing action of a countable abelian group on a probability space has higher-order mixing properties. This is achieved via the utilization of $\mathcal R$-limits, a notion of convergence which is based on the classical Ramsey theorem. $\mathcal R$-limits are intrinsically connected with a new combinatorial notion of largeness which is similar to but has stronger properties than the classical notions of uniform density one and IP$^*$. While the main goal of this paper is to establish a universal property of strongly mixing actions of countable abelian groups, our results, when applied to ${\mathbb {Z}}$-actions, offer a new way of dealing with strongly mixing transformations. In particular, we obtain several new characterizations of strong mixing for ${\mathbb {Z}}$-actions, including a result which can be viewed as the analogue of the weak mixing of all orders property established by Furstenberg in the course of his proof of Szemerédi’s theorem. We also demonstrate the versatility of $\mathcal R$-limits by obtaining new characterizations of higher-order weak and mild mixing for actions of countable abelian groups.
We show that an $n$-uniform maximal intersecting family has size at most $e^{-n^{0.5+o(1)}}n^n$. This improves a recent bound by Frankl ((2019) Comb. Probab. Comput.28(5) 733–739.). The Spread Lemma of Alweiss et al. ((2020) Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.) plays an important role in the proof.
An n-vertex graph is called C-Ramsey if it has no clique or independent set of size $C\log _2 n$ (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a C-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables.
The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes.
Given $\alpha \gt 0$ and an integer $\ell \geq 5$, we prove that every sufficiently large $3$-uniform hypergraph $H$ on $n$ vertices in which every two vertices are contained in at least $\alpha n$ edges contains a copy of $C_\ell ^{-}$, a tight cycle on $\ell$ vertices minus one edge. This improves a previous result by Balogh, Clemen, and Lidický.
We show that the size-Ramsey number of the $\sqrt{n} \times \sqrt{n}$ grid graph is $O(n^{5/4})$, improving a previous bound of $n^{3/2 + o(1)}$ by Clemens, Miralaei, Reding, Schacht, and Taraz.
A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series
$f(A) = \sum _{a\in A}1/(a \log a)$
is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative.
As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
We study the problem of determining the minimum number $f(n,k,d)$ of affine subspaces of codimension $d$ that are required to cover all points of $\mathbb{F}_2^n\setminus \{\vec{0}\}$ at least $k$ times while covering the origin at most $k - 1$ times. The case $k=1$ is a classic result of Jamison, which was independently obtained by Brouwer and Schrijver for $d = 1$. The value of $f(n,1,1)$ also follows from a well-known theorem of Alon and Füredi about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this function exactly in various ranges of the parameters. In particular, we prove that for $k\geq 2^{n-d-1}$ we have $f(n,k,d)=2^d k-\left\lfloor{\frac{k}{2^{n-d}}}\right\rfloor$, while for $n \gt 2^{2^d k-k-d+1}$ we have $f(n,k,d)=n + 2^d k -d-2$, and obtain asymptotic results between these two ranges. While previous work in this direction has primarily employed the polynomial method, we prove our results through more direct combinatorial and probabilistic arguments, and also exploit a connection to coding theory.
For a fixed infinite graph $H$, we study the largest density of a monochromatic subgraph isomorphic to $H$ that can be found in every two-colouring of the edges of $K_{\mathbb{N}}$. This is called the Ramsey upper density of $H$ and was introduced by Erdős and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs $H$ up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of $H$, the number of components of $H$ and the expansion ratio $|N(I)|/|I|$ of the independent sets of $H$.
The notion of cross-intersecting set pair system of size
$m$
,
$ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$
with
$A_i\cap B_i=\emptyset$
and
$A_i\cap B_j\ne \emptyset$
, was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that
$m\le\binom{a+b}{a}$
if
$|A_i|\le a$
and
$|B_i|\le b$
for each
$i$
. Our central problem is to see how this bound changes with the additional condition
$|A_i\cap B_j|=1$
for
$i\ne j$
. Such a system is called
$1$
-cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is
at least
$5^{n/2}$
for
$n$
even,
$a=b=n$
,
equal to
$\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$
if
$a=2$
and
$b=n\ge 4$
,
at most
$|\cup _{i=1}^m A_i|$
,
asymptotically
$n^2$
if
$\{A_i\}$
is a linear hypergraph (
$|A_i\cap A_j|\le 1$
for
$i\ne j$
),
asymptotically
${1\over 2}n^2$
if
$\{A_i\}$
and
$\{B_i\}$
are both linear hypergraphs.
Given partially ordered sets (posets)
$(P, \leq _P\!)$
and
$(P^{\prime}, \leq _{P^{\prime}}\!)$
, we say that
$P^{\prime}$
contains a copy of
$P$
if for some injective function
$f\,:\, P\rightarrow P^{\prime}$
and for any
$X, Y\in P$
,
$X\leq _P Y$
if and only if
$f(X)\leq _{P^{\prime}} f(Y)$
. For any posets
$P$
and
$Q$
, the poset Ramsey number
$R(P,Q)$
is the least positive integer
$N$
such that no matter how the elements of an
$N$
-dimensional Boolean lattice are coloured in blue and red, there is either a copy of
$P$
with all blue elements or a copy of
$Q$
with all red elements. We focus on a poset Ramsey number
$R(P, Q_n)$
for a fixed poset
$P$
and an
$n$
-dimensional Boolean lattice
$Q_n$
, as
$n$
grows large. We show a sharp jump in behaviour of this number as a function of
$n$
depending on whether or not
$P$
contains a copy of either a poset
$V$
, that is a poset on elements
$A, B, C$
such that
$B\gt C$
,
$A\gt C$
, and
$A$
and
$B$
incomparable, or a poset
$\Lambda$
, its symmetric counterpart. Specifically, we prove that if
$P$
contains a copy of
$V$
or
$\Lambda$
then
$R(P, Q_n) \geq n +\frac{1}{15} \frac{n}{\log n}$
. Otherwise
$R(P, Q_n) \leq n + c(P)$
for a constant
$c(P)$
. This gives the first non-marginal improvement of a lower bound on poset Ramsey numbers and as a consequence gives
$R(Q_2, Q_n) = n + \Theta \left(\frac{n}{\log n}\right)$
.
A subset Y of the general linear group
$\text{GL}(n,q)$
is called t-intersecting if
$\text{rk}(x-y)\le n-t$
for all
$x,y\in Y$
, or equivalently x and y agree pointwise on a t-dimensional subspace of
$\mathbb{F}_q^n$
for all
$x,y\in Y$
. We show that, if n is sufficiently large compared to t, the size of every such t-intersecting set is at most that of the stabiliser of a basis of a t-dimensional subspace of
$\mathbb{F}_q^n$
. In case of equality, the characteristic vector of Y is a linear combination of the characteristic vectors of the cosets of these stabilisers. We also give similar results for subsets of
$\text{GL}(n,q)$
that intersect not necessarily pointwise in t-dimensional subspaces of
$\mathbb{F}_q^n$
and for cross-intersecting subsets of
$\text{GL}(n,q)$
. These results may be viewed as variants of the classical Erdős–Ko–Rado Theorem in extremal set theory and are q-analogs of corresponding results known for the symmetric group. Our methods are based on eigenvalue techniques to estimate the size of the largest independent sets in graphs and crucially involve the representation theory of
$\text{GL}(n,q)$
.
The book graph
$B_n ^{(k)}$
consists of
$n$
copies of
$K_{k+1}$
joined along a common
$K_k$
. In the prequel to this paper, we studied the diagonal Ramsey number
$r(B_n ^{(k)}, B_n ^{(k)})$
. Here we consider the natural off-diagonal variant
$r(B_{cn} ^{(k)}, B_n^{(k)})$
for fixed
$c \in (0,1]$
. In this more general setting, we show that an interesting dichotomy emerges: for very small
$c$
, a simple
$k$
-partite construction dictates the Ramsey function and all nearly-extremal colourings are close to being
$k$
-partite, while, for
$c$
bounded away from
$0$
, random colourings of an appropriate density are asymptotically optimal and all nearly-extremal colourings are quasirandom. Our investigations also open up a range of questions about what happens for intermediate values of
$c$
.
We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ over $\mathsf {RCA}_0$. For each fixed $k \geq 3$, the Rival–Sands theorem for infinite partial orders of width $\leq \!k$ is equivalent to $\mathsf {ADS}$ over $\mathsf {RCA}_0$. The Rival–Sands theorem for infinite partial orders that are decomposable into the union of two chains is equivalent to $\mathsf {SADS}$ over $\mathsf {RCA}_0$. Here $\mathsf {RCA}_0$ denotes the recursive comprehension axiomatic system, $\mathsf {I}\Sigma ^0_{2}$ denotes the $\Sigma ^0_2$ induction scheme, $\mathsf {ADS}$ denotes the ascending/descending sequence principle, and $\mathsf {SADS}$ denotes the stable ascending/descending sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial orders are the first examples of theorems from the general mathematics literature whose strength is exactly characterized by $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$, by $\mathsf {ADS}$, and by $\mathsf {SADS}$. Furthermore, we give a new purely combinatorial result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains, and we show that this extension is equivalent to arithmetical comprehension over $\mathsf {RCA}_0$.