We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Orbit separation dimension ($\mathrm {OSD}$), previously introduced as amorphic complexity, is a powerful complexity measure for topological dynamical systems with pure-point spectrum. Here, we develop methods and tools for it that allow a systematic application to translation dynamical systems of tiling spaces that are generated by primitive inflation rules. These systems share many nice properties that permit the explicit computation of the $\mathrm {OSD}$, thus providing a rich class of examples with non-trivial $\mathrm {OSD}$.
Let $H_n$ be the minimal number such that any n-dimensional convex body can be covered by $H_n$ translates of the interior of that body. Similarly $H_n^s$ is the corresponding quantity for symmetric bodies. It is possible to define $H_n$ and $H_n^s$ in terms of illumination of the boundary of the body using external light sources, and the famous Hadwiger’s covering conjecture (illumination conjecture) states that $H_n=H_{n}^s=2^n$. In this note, we obtain new upper bounds on $H_n$ and $H_{n}^s$ for small dimensions n. Our main idea is to cover the body by translates of John’s ellipsoid (the inscribed ellipsoid of the largest volume). Using specific lattice coverings, estimates of quermassintegrals for convex bodies in John’s position, and calculations of mean widths of regular simplexes, we prove the following new upper bounds on $H_n$ and $H_n^s$: $H_5\le 933$, $H_6\le 6137$, $H_7\le 41377$, $H_8\le 284096$, $H_4^s\le 72$, $H_5^s\le 305$, and $H_6^s\le 1292$. For larger n, we describe how the general asymptotic bounds $H_n\le \binom {2n}{n}n(\ln n+\ln \ln n+5)$ and $H_n^s\le 2^n n(\ln n+\ln \ln n+5)$ due to Rogers, Shephard and Roger, Zong, respectively, can be improved for specific values of n.
We give an affirmative answer to a long-standing conjecture of Thomassen, stating that every sufficiently highly connected graph has a k-vertex-connected orientation. We prove that a connectivity of order $O(k^2)$ suffices. As a key tool, we show that for every pair of positive integers d and t, every $(t \cdot h(d))$-connected graph contains t edge-disjoint d-rigid (in particular, d-connected) spanning subgraphs, where $h(d) = 10d(d+1)$. This also implies a positive answer to the conjecture of Kriesell that every sufficiently highly connected graph G contains a spanning tree T such that $G-E(T)$ is k-connected.
An empty simplex is a lattice simplex in which vertices are the only lattice points. We show two constructions leading to the first known empty simplices of width larger than their dimension:
◦ We introduce cyclotomic simplices and exhaustively compute all the cyclotomic simplices of dimension $10$ and volume up to $2^{31}$. Among them, we find five empty ones of width $11$ and none of larger width.
◦ Using circulant matrices of a very specific form, we construct empty simplices of arbitrary dimension d and width growing asymptotically as $d/\operatorname {\mathrm {arcsinh}}(1) \sim 1.1346\,d$.
The rank of a tiling’s return module depends on the geometry of its tiles and is not a topological invariant. However, the rank of the first Čech cohomology $\check H^1(\Omega )$ gives upper and lower bounds for the rank of the return module. For all sufficiently large patches, the rank of the return module is at most the rank of $\check H^1(\Omega )$. For a generic choice of tile shapes and an arbitrary reference patch, the rank of the return module is at least the rank of $\check H^1(\Omega )$. Therefore, for generic tile shapes and all sufficiently large patches, the rank of the return module is equal to the rank of $\check H^1(\Omega )$.
We show that if $\Gamma $ is a point group of $\mathbb {R}^{k+1}$ of order two for some $k\geq 2$ and $\mathcal {S}$ is a k-pseudomanifold which has a free automorphism of order two, then either $\mathcal {S}$ has a $\Gamma $-symmetric infinitesimally rigid realisation in ${\mathbb R}^{k+1}$ or $k=2$ and $\Gamma $ is a half-turn rotation group. This verifies a conjecture made by Klee, Nevo, Novik and Zheng for the case when $\Gamma $ is a point-inversion group. Our result implies that Stanley’s lower bound theorem for centrally symmetric polytopes extends to pseudomanifolds with a free simplicial automorphism of order 2, thus verifying (the inequality part of) another conjecture of Klee, Nevo, Novik and Zheng. Both results actually apply to a much larger class of simplicial complexes – namely, the circuits of the simplicial matroid. The proof of our rigidity result adapts earlier ideas of Fogelsanger to the setting of symmetric simplicial complexes.
The present paper explores a connection between two concepts arising from different fields of mathematics. The first concept, called vine, is a graphical model for dependent random variables. This concept first appeared in a work of Joe (1994), and the formal definition was given later by Cooke (1997). Vines have nowadays become an active research area whose applications can be found in probability theory and uncertainty analysis. The second concept, called MAT-freeness, is a combinatorial property in the theory of freeness of logarithmic derivation modules of hyperplane arrangements. This concept was first studied by Abe-Barakat-Cuntz-Hoge-Terao (2016), and soon afterwards investigated further by Cuntz-Mücksch (2020).
In the particular case of graphic arrangements, the last two authors (2023) recently proved that the MAT-freeness is completely characterized by the existence of certain edge-labeled graphs, called MAT-labeled graphs. In this paper, we first introduce a poset characterization of a vine. Then we show that, interestingly, there exists an explicit equivalence between the categories of locally regular vines and MAT-labeled graphs. In particular, we obtain an equivalence between the categories of regular vines and MAT-labeled complete graphs.
Several applications will be mentioned to illustrate the interaction between the two concepts. Notably, we give an affirmative answer to a question of Cuntz-Mücksch that MAT-freeness can be characterized by a generalization of the root poset in the case of graphic arrangements.
Given any smooth germ of a 3-fold flopping contraction, we first give a combinatorial characterisation of which Gopakumar–Vafa (GV) invariants are non-zero, by prescribing multiplicities to the walls in the movable cone. On the Gromov–Witten (GW) side, this allows us to describe, and even draw, the critical locus of the associated quantum potential. We prove that the critical locus is the infinite hyperplane arrangement of Iyama and the second author and, moreover, that the quantum potential can be reconstructed from a finite fundamental domain. We then iterate, obtaining a combinatorial description of the matrix that controls the transformation of the non-zero GV invariants under a flop. There are three main ingredients and applications: (1) a construction of flops from simultaneous resolution via cosets, which describes how the dual graph changes; (2) a closed formula, which describes the change in dimension of the contraction algebra under flop; and (3) a direct and explicit isomorphism between quantum cohomologies of different crepant resolutions, giving a Coxeter-style, visual proof of the Crepant Transformation Conjecture for isolated cDV singularities.
The optimal $L^4$-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus $\mathbb {T}^2$ is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger $L^4$ bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in $H^s(\mathbb {T}^2)$ for any $s>0$ and data that are small in the critical norm.
Two asymptotic configurations on a full $\mathbb {Z}^d$-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$. Many open questions are raised by the current work and are listed in the introduction.
The aim of this paper is to determine the asymptotic growth rate of the complexity function of cut-and-project sets in the non-abelian case. In the case of model sets of polytopal type in homogeneous two-step nilpotent Lie groups, we can establish that the complexity function asymptotically behaves like $r^{{\mathrm {homdim}}(G) \dim (H)}$. Further, we generalize the concept of acceptance domains to locally compact second countable groups.
In this paper, we provide a general framework for counting geometric structures in pseudo-random graphs. As applications, our theorems recover and improve several results on the finite field analog of questions originally raised in the continuous setting. The results present interactions between discrete geometry, geometric measure theory, and graph theory.
Tao and Vu showed that every centrally symmetric convex progression $C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d\log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.
Given an affine Coxeter group W, the corresponding Shi arrangement is a refinement of the corresponding Coxeter hyperplane arrangements that was introduced by Shi to study Kazhdan–Lusztig cells for W. Shi showed that each region of the Shi arrangement contains exactly one element of minimal length in W. Low elements in W were introduced to study the word problem of the corresponding Artin–Tits (braid) group and turns out to produce automata to study the combinatorics of reduced words in W. In this article, we show, in the case of an affine Coxeter group, that the set of minimal length elements of the regions in the Shi arrangement is precisely the set of low elements, settling a conjecture of Dyer and the second author in this case. As a by-product of our proof, we show that the descent walls – the walls that separate a region from the fundamental alcove – of any region in the Shi arrangement are precisely the descent walls of the alcove of its corresponding low element.
We introduce a class of Falconer distance problems, which we call of restricted type, lying between the classical version and its pinned variant. Prototypical restricted distance sets are the diagonal distance sets, k-point configuration sets given by
for a compact $E\subset \mathbb {R}^d$ and $k\ge 3$. We show that $\Delta ^{\mathrm{diag}}(E)$ has non-empty interior if the Hausdorff dimension of E satisfies (0.1)
We prove an extension of this to $C^\omega $ Riemannian metrics g close to the product of Euclidean metrics. For product metrics, this follows from known results on pinned distance sets, but to obtain a result for general perturbations g, we present a sequence of proofs of partial results, leading up to the proof of the full result, which is based on estimates for multilinear Fourier integral operators.
Let $\mathbb {F}_q^d$ denote the d-dimensional vector space over the finite field $\mathbb {F}_q$ with q elements. Define for $\alpha = (\alpha _1, \dots , \alpha _d) \in \mathbb {F}_q^d$. Let $k\in \mathbb {N}$, A be a nonempty subset of $\{(i, j): 1 \leq i < j \leq k + 1\}$ and $r\in (\mathbb {F}_q)^2\setminus {0}$, where $(\mathbb {F}_q)^2=\{a^2:a\in \mathbb {F}_q\}$. If $E\subset \mathbb {F}_q^d$, our main result demonstrates that when the size of the set E satisfies $|E| \geq C_k q^{d/2}$, where $C_k$ is a constant depending solely on k, it is possible to find two $(k+1)$-tuples in E such that one of them is dilated by r with respect to the other, but only along $|A|$ edges. To be more precise, we establish the existence of $(x_1, \dots , x_{k+1}) \in E^{k+1}$ and $(y_1, \dots , y_{k+1}) \in E^{k+1}$ such that, for $(i, j) \in A$, we have $\lVert y_i - y_j \rVert = r \lVert x_i - x_j \rVert $, with the conditions that $x_i \neq x_j$ and $y_i \neq y_j$ for $1 \leq i < j \leq k + 1$, provided that $|E| \geq C_k q^{d/2}$ and $r\in (\mathbb {F}_q)^2\setminus \{0\}$. We provide two distinct proofs of this result. The first uses the technique of group actions, a powerful method for addressing such problems, while the second is based on elementary combinatorial reasoning. Additionally, we establish that in dimension 2, the threshold $d/2$ is sharp when $q \equiv 3 \pmod 4$. As a corollary of the main result, by varying the underlying set A, we determine thresholds for the existence of dilated k-cycles, k-paths and k-stars (where $k \geq 3$) with a dilation ratio of $r\in (\mathbb {F}_q)^2\setminus \{0\}$. These results improve and generalise the findings of Xie and Ge [‘Some results on similar configurations in subsets of $\mathbb {F}_q^d$’, Finite Fields Appl.91 (2023), Article no. 102252, 20 pages].
We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety.
The construction of a spectral cocycle from the case of one-dimensional substitution flows [A. I. Bufetov and B. Solomyak. A spectral cocycle for substitution systems and translation flows. J. Anal. Math.141(1) (2020), 165–205] is extended to the setting of pseudo-self-similar tilings in ${\mathbb R}^d$, allowing expanding similarities with rotations. The pointwise upper Lyapunov exponent of this cocycle is used to bound the local dimension of spectral measures of deformed tilings. The deformations are considered, following the work of Treviño [Quantitative weak mixing for random substitution tilings. Israel J. Math., to appear], in the simpler, non-random setting. We review some of the results of Treviño in this special case and illustrate them on concrete examples.
Edge-to-edge tilings of the sphere by congruent quadrilaterals are completely classified in a series of three papers. This second one applies the powerful tool of trigonometric Diophantine equations to classify the case of $a^3b$-quadrilaterals with all angles being rational degrees. There are $12$ sporadic and $3$ infinite sequences of quadrilaterals admitting the two-layer earth map tilings together with their modifications, and $3$ sporadic quadrilaterals admitting $4$ exceptional tilings. Among them only three quadrilaterals are convex. New interesting non-edge-to-edge triangular tilings are obtained as a byproduct.
We study the problem of determining the minimum number $f(n,k,d)$ of affine subspaces of codimension $d$ that are required to cover all points of $\mathbb{F}_2^n\setminus \{\vec{0}\}$ at least $k$ times while covering the origin at most $k - 1$ times. The case $k=1$ is a classic result of Jamison, which was independently obtained by Brouwer and Schrijver for $d = 1$. The value of $f(n,1,1)$ also follows from a well-known theorem of Alon and Füredi about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this function exactly in various ranges of the parameters. In particular, we prove that for $k\geq 2^{n-d-1}$ we have $f(n,k,d)=2^d k-\left\lfloor{\frac{k}{2^{n-d}}}\right\rfloor$, while for $n \gt 2^{2^d k-k-d+1}$ we have $f(n,k,d)=n + 2^d k -d-2$, and obtain asymptotic results between these two ranges. While previous work in this direction has primarily employed the polynomial method, we prove our results through more direct combinatorial and probabilistic arguments, and also exploit a connection to coding theory.