We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the global asymptotic stability for positive solutions to a class of general symmetric rational difference equations and prove that the unique positive equilibrium 1 of the general symmetric rational difference equations is globally asymptotically stable. As a special case of our result, we solve the conjecture raised by Berenhaut, Foley and Stević [‘The global attractivity of the rational difference equation yn=(yn−k+yn−m)/(1+yn−kyn−m)’, Appl. Math. Lett.20 (2007), 54–58].
We introduce the τ-function of a difference rational connection (d-connection) and its isomonodromy transformations. We show that in a continuous limit ourτ-function agrees with the Jimbo–Miwa–Ueno τ-function. We compute the τ-function for the isomonodromy transformations leading to difference Painlevé V and difference Painlevé VI equations. We prove that the gap probability for a wide class of discrete random matrix type models can be viewed as the τ-function for an associated d-connection.
Let Wn be a simple Markov chain on the integers. Suppose that Xn is a simple Markov chain on the integers whose transition probabilities coincide with those of Wn off a finite set. We prove that there is an M > 0 such that the Markov chain Wn and the joint distributions of the first hitting time and first hitting place of Xn started at the origin for the sets {-M, M} and {-(M + 1), (M + 1)} algorithmically determine the transition probabilities of Xn.
In this paper, existence criteria for multiple solutions of periodic boundary value problems for the first-order difference equation are established by using the Leggett–Williams multiple fixed point theorem and fixed point theorem of cone expansion and compression. Two examples are also given to illustrate the main results.
We discuss ℓp-maximal regularity of power-bounded operators and relate the discrete to the continuous time problem for analytic semigroups. We give a complete characterization of operators with ℓ1 and -maximal regularity. We also introduce an unconditional form of Ritt’s condition for power-bounded operators, which plays the role of the existence of an -calculus, and give a complete characterization of this condition in the case of Banach spaces which are L1-spaces, C(K)-spaces or Hilbert spaces.
This paper deals with criteria of algebraic independence for the derivatives of solutions of diagonal difference systems. The key idea consists in deriving from the commutativity of the differentiation and difference operators a sequence of iterated extensions of the original difference module, thereby setting the problem in the framework of difference Galois theory and finally reducing it to an exercise in linear algebra on the group of divisors of the involved elliptic curve or torus.
Nonoscillatory solutions of a nonlinear neutral type higher order difference equations are classified by means of their asymptotic behaviors. Existence criteria are then provided for justification of such classficiation.
We present a general recurrence model which provides a conceptual framework for well-known problems such as ascents, peaks, turning points, Bernstein's urn model, the Eggenberger–Pólya urn model and the hypergeometric distribution. Moreover, we show that the Frobenius-Harper technique, based on real roots of a generating function, can be applied to this general recurrence model (under simple conditions), and so a Berry–Esséen bound and local limit theorems can be found. This provides a simple and unified approach to asymptotic theory for diverse problems hitherto treated separately.
Existence results are presented for second order discrete boundary value problems in abstract spaces. Our analysis uses only Sadovskii's fixed point theorem.
Let be a homogeneous tree of degree at least three. In this paper we investigate for which values of p and r the (σθ)-Poisson semigroup is Lp – Lr,-bounded, and we sharp estimate for the corresponding operator norms.
We will prove the Theorem of Hartman-Grobman in a very general form. It states the topological equivalence of the flow of a nonlinear non-autonomous differential or difference equation with critical component to the flow of a partially linearized equation. The critical spectrum has not necessearily to be contained in the imaginary axis or the unit circle respectively. Further on we will employ the socalled calculus on measure chains within dynamical systems theory. Within this calculus the usual one dimensional time scales can be replaced by measure chains which are essentially closed subsets of R. The paper can be understood without knowledge of this calculus.
So our main theorem will be valid even for equations defined on very strange time scales such as sequences of closed intervals. This is especially interesting for applications within the theory of differential-difference equations or within numerical analysis of qualitative phenomena of dynamical systems.
It was shown by Edgar and Rosenblatt that f ∈ Lp (ℝn), 1 ≤ p < 2n/ (n-1), and f ≠0, then f has linearly independent translates. Using a result of Hömander, it is shown here that the same theorem holds if p = 2n / (n−1). This gives a sharp result because for n ≥2, there exists f ∈C0 (ℝn), f ≠0, which is simultaneously in all Lp (ℝn), p > 2n/(n−1), that has a linear dependence relation among its translates. References and some discussion are included.
Sufficient conditons are given for the chaotic behaviour of difference equations defined in terms of continuous mappings in Rn. These conditions are applicable to both difference equations with snap-back repellors and with saddle points. They are applied here to the twisted-horseshoe difference equation of Guckenheimer, Oster and Ipaktchi.
We establish a general algebraic independence theorem for the solutions of a certain kind of functional equations. As a particular application, we prove that for any real irrational ζ, the numbers are algebraically independent, for multiplicatively independent algebraic αi with 0<|<| <1.