We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL2(ℝ). We also study actions of Kähler groups on infinite-dimensional real hyperbolic spaces, describe some exotic actions of PSL2(ℝ) on these spaces, and give an application to the study of the Cremona group.
We study the geometric properties of a base manifold whose unit tangent sphere bundle, equipped with the standard contact metric structure, is H-contact. We prove that a necessary and sufficient condition for the unit tangent sphere bundle of a four-dimensional Riemannian manifold to be H-contact is that the base manifold is 2-stein.
We study compatible toric Sasaki metrics with constant scalar curvature on co-oriented compact toric contact manifolds of Reeb type of dimension at least five. These metrics come in rays of transversal homothety due to the possible rescaling of the Reeb vector fields. We prove that there exist Reeb vector fields for which the transversal Futaki invariant (restricted to the Lie algebra of the torus) vanishes. Using an existence result of E. Legendre [Toric geometry of convex quadrilaterals, J. Symplectic Geom. 9 (2011), 343–385], we show that a co-oriented compact toric contact 5-manifold whose moment cone has four facets admits a finite number of rays of transversal homothetic compatible toric Sasaki metrics with constant scalar curvature. We point out a family of well-known toric contact structures on S2×S3 admitting two non-isometric and non-transversally homothetic compatible toric Sasaki metrics with constant scalar curvature.
Complete minimal immersions satisfying the Omori–Yau maximum principle are investigated. It is shown that the limit set of a proper immersion into a convex set must be the whole boundary of the convex set. In case of a nonproper and nonplanar immersion we prove that the convex hull of the immersion is a half-space or ℝ3.
We find approximate solutions (chord–arc curves) for the system of equations of geodesics in Ω∩ℍ for every Denjoy domain Ω, with respect to both the Poincaré and the quasi-hyperbolic metrics. We also prove that these chord–arc curves are uniformly close to the geodesics. As an application of these results, we obtain good estimates for the lengths of simple closed geodesics in any Denjoy domain, and we improve the characterization in a 1999 work by Alvarez et al. on Denjoy domains satisfying the linear isoperimetric inequality.
Let M=G/K be a generalized flag manifold, that is, an adjoint orbit of a compact, connected and semisimple Lie group G. We use a variational approach to find non-Kähler homogeneous Einstein metrics for flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume.
We prove that an algebraic subvariety of a Shimura variety is weakly special if and only if analytic components of its preimage in the symmetric space are algebraic. We also prove an analogous result in the case of abelian varieties.
Let G/K be a noncompact symmetric space, Gc/K its compact dual, 𝔤=𝔨⊕𝔭 the Cartan decomposition of the Lie algebra 𝔤 of G, 𝔞 a maximal abelian subspace of 𝔭, H be an element of 𝔞, a=exp (H) , and ac =exp (iH) . In this paper, we prove that if for some positive integer r, νrac is absolutely continuous with respect to the Haar measure on Gc, then νra is absolutely continuous with respect to the left Haar measure on G, where νac (respectively νa) is the K-bi-invariant orbital measure supported on the double coset KacK (respectively KaK). We also generalize a result of Gupta and Hare [‘Singular dichotomy for orbital measures on complex groups’, Boll. Unione Mat. Ital. (9) III (2010), 409–419] to general noncompact symmetric spaces and transfer many of their results from compact symmetric spaces to their dual noncompact symmetric spaces.
The asymptotic stability of two types of invariant solutions under a curvature flow in the whole plane is studied. First, by extending the work of others, we prove that the stationary line with nonzero slope will attract the graphical curves which surround it. Then a similar property is obtained for the grim reaper.
Let (P,Y ) be a bundle gerbe over a fibre bundle Y →M. We show that if M is simply connected and the fibres of Y →M are connected and finite-dimensional, then the Dixmier–Douady class of (P,Y ) is torsion. This corrects and extends an earlier result of the first author.
We review and then combine two aspects of the theory of bundle gerbes. The first concerns lifting bundle gerbes and connections on those, developed by Murray and by Gomi. Lifting gerbes represent obstructions against extending the structure group of a principal bundle. The second is the transgression of gerbes to loop spaces, initiated by Brylinski and McLaughlin and with recent contributions of the author. Combining these two aspects, we obtain a new formulation of lifting problems in terms of geometry on the loop space. Most prominently, our formulation explains the relation between (complex) spin structures on a Riemannian manifold and orientations of its loop space.
We study closed Einstein–Weyl structures on compact K-contact, Sasakian and cosymplectic manifolds. In particular we prove that compact Sasakian and cosymplectic manifolds endowed with a closed Einstein–Weyl structure are η-Einstein.
A compact contact Ricci soliton (whose potential vector field is the Reeb vector field) is Sasaki–Einstein. A compact contact homogeneous manifold with a Ricci soliton is Sasaki–Einstein.
We prove that the Calabi–Yau equation can be solved on the Kodaira–Thurston manifold for all given T2-invariant volume forms. This provides support for Donaldson's conjecture that Yau's theorem has an extension to symplectic 4-manifolds with compatible but non-integrable almost complex structures.
On a Fano manifold M we study the supremum of the possible t such that there is a Kähler metric ω∈c1(M) with Ricci curvature bounded below by t. This is shown to be the same as the maximum existence time of Aubin’s continuity path for finding Kähler–Einstein metrics. We show that on P2 blown up in one point this supremum is 6/7, and we give upper bounds for other manifolds.
We characterize quasi-Kähler manifolds whose curvature tensor associated to the canonical Hermitian connection satisfies the first Bianchi identity. This condition is related to the third Gray identity and in the almost-Kähler case implies the integrability. Our main tool is the existence of generalized holomorphic frames previously introduced by the second author. By using such frames we also give a simpler and shorter proof of a theorem of Goldberg. Furthermore, we study almost-Hermitian structures having the curvature tensor associated to the canonical Hermitian connection equal to zero. We show some explicit examples of quasi-Kähler structures on the Iwasawa manifold having the Hermitian curvature vanishing and the Riemann curvature tensor satisfying the second Gray identity.
We show that on the Hilbert scheme of n points on ℂ2, the hyperkähler metric constructed by Nakajima via hyperkähler reduction is the quasi-asymptotically locally Euclidean (QALE) metric constructed by Joyce.
We prove that all g-natural contact metric structures on a two-point homogeneous space are homogeneous contact. The converse is also proved for metrics of Kaluza–Klein type. We also show that if (M,g) is an Einstein manifold and is a Riemannian g-natural metric on T1M of Kaluza–Klein type, then is H-contact if and only if (M,g) is 2-stein, so proving that the main result of Chun et al. [‘H-contact unit tangent sphere bundles of Einstein manifolds’, Q. J. Math., to appear. DOI: 10.1093/qmath/hap025] is invariant under a two-parameter deformation of the standard contact metric structure on T1M. Moreover, we completely characterize Riemannian manifolds admitting two distinct H-contact g-natural contact metric structures, with associated metric of Kaluza–Klein type.