We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that a system of homogeneous second-order ordinary differential equations (spray) is necessarily isotropic in order to be metrizable by a Finsler function of scalar flag curvature. In our main result we show that the isotropy condition, together with three other conditions on the Jacobi endomorphism, characterize sprays that are metrizable by Finsler functions of scalar flag curvature. We call these conditions the scalar flag curvature (SFC) test. The proof of the main result provides an algorithm to construct the Finsler function of scalar flag curvature, in the case when a given spray is metrizable. Hilbert’s fourth problem asks to determine the Finsler functions with rectilinear geodesics. A Finsler function that is a solution to Hilbert’s fourth problem is necessarily of constant or scalar flag curvature. Therefore, we can use the constant flag curvature (CFC) test, which we developed in our previous paper, Bucataru and Muzsnay [‘Sprays metrizable by Finsler functions of constant flag curvature’, Differential Geom. Appl.31 (3)(2013), 405–415] as well as the SFC test to decide whether or not the projective deformations of a flat spray, which are isotropic, are metrizable by Finsler functions of constant or scalar flag curvature. We show how to use the algorithms provided by the CFC and SFC tests to construct solutions to Hilbert’s fourth problem.
The Chern–Ricci flow is an evolution equation of Hermitian metrics by their Chern–Ricci form, first introduced by Gill. Building on our previous work, we investigate this flow on complex surfaces. We establish new estimates in the case of finite time non-collapsing, analogous to some known results for the Kähler–Ricci flow. This provides evidence that the Chern–Ricci flow carries out blow-downs of exceptional curves on non-minimal surfaces. We also describe explicit solutions to the Chern–Ricci flow for various non-Kähler surfaces. On Hopf surfaces and Inoue surfaces these solutions, appropriately normalized, collapse to a circle in the sense of Gromov–Hausdorff. For non-Kähler properly elliptic surfaces, our explicit solutions collapse to a Riemann surface. Finally, we define a Mabuchi energy functional for complex surfaces with vanishing first Bott–Chern class and show that it decreases along the Chern–Ricci flow.
In this paper we prove the existence of complete minimal surfaces in some metric semidirect products. These surfaces are similar to the doubly and singly periodic Scherk minimal surfaces in ${ \mathbb{R} }^{3} $. In particular, we obtain these surfaces in the Heisenberg space with its canonical metric, and in ${\mathrm{Sol} }_{3} $ with a one-parameter family of nonisometric metrics.
In this paper, we develop a method of solving the Poincaré–Lelong equation, mainly via the study of the large time asymptotics of a global solution to the Hodge–Laplace heat equation on $(1, 1)$-forms. The method is effective in proving an optimal result when $M$ has nonnegative bisectional curvature. It also provides an alternate proof of a recent gap theorem of the first author.
We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are logically equivalent to the assumption that the manifold carries a ${C}^{2} $ proper function whose gradient and Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori–Yau principle, formulated in terms of lower bounds for curvature.
We introduce an analogue in hyperkähler geometry of the symplectic implosion, in the case of $\mathrm{SU} (n)$ actions. Our space is a stratified hyperkähler space which can be defined in terms of quiver diagrams. It also has a description as a non-reductive geometric invariant theory quotient.
Let ${F}_{BC} (\lambda , k; t)$ be the Heckman–Opdam hypergeometric function of type BC with multiplicities $k= ({k}_{1} , {k}_{2} , {k}_{3} )$ and weighted half-sum $\rho (k)$ of positive roots. We prove that ${F}_{BC} (\lambda + \rho (k), k; t)$ converges as ${k}_{1} + {k}_{2} \rightarrow \infty $ and ${k}_{1} / {k}_{2} \rightarrow \infty $ to a function of type A for $t\in { \mathbb{R} }^{n} $ and $\lambda \in { \mathbb{C} }^{n} $. This limit is obtained from a corresponding result for Jacobi polynomials of type BC, which is proven for a slightly more general limit behavior of the multiplicities, using an explicit representation of Jacobi polynomials in terms of Jack polynomials. Our limits include limit transitions for the spherical functions of non-compact Grassmann manifolds over one of the fields $ \mathbb{F} = \mathbb{R} , \mathbb{C} , \mathbb{H} $ when the rank is fixed and the dimension tends to infinity. The limit functions turn out to be exactly the spherical functions of the corresponding infinite-dimensional Grassmann manifold in the sense of Olshanski.
We prove the existence of extremal Sasakian structures occurring on a countably infinite number of distinct contact structures on ${T}^{2} \times {S}^{3} $ and certain related 5-manifolds. These structures occur in bouquets and exhaust the Sasaki cones in all except one case in which there are no extremal metrics.
We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero.
We prove the classification of the real vector subspaces of a quaternionic vector space by using a covariant functor which associates, to any pair formed of a quaternionic vector space and a real subspace, a coherent sheaf over the sphere.
We study a class of Hermitian metrics on complex manifolds, recently introduced by Fu, Wang and Wu, which are a generalization of Gauduchon metrics. This class includes the class of Hermitian metrics for which the associated fundamental 2-form is ∂∂-closed. Examples are given on nilmanifolds, on products of Sasakian manifolds, on S1-bundles and via the twist construction introduced by Swann.
In this paper, we give a classification of spacelike submanifolds with parallel normalised mean curvature vector field and linear relation $R= aH+ b$ of the normalised scalar curvature $R$ and the mean curvature $H$ in the de Sitter space ${ S}_{p}^{n+ p} (c)$.
We prove the standard conjectures for complex projective varieties that are deformations of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s theory of hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert schemes of K3 surfaces.
Slant curves are introduced in three-dimensional warped products with Euclidean factors. These curves are characterised by the scalar product between the normal at the curve and the vertical vector field, and an important feature is that the case of constant Frenet curvatures implies a proper mean curvature vector field. A Lancret invariant is obtained and the Legendre curves are analysed as a particular case. An example of a slant curve is given for the exponential warping function; our example illustrates a proper (that is, not reducible to the two-dimensional) case of the Lancret theorem of three-dimensional hyperbolic geometry. We point out an eventuality relationship with the geometry of relativistic models.
We study Fredholm properties and index formulas for Dirac operators over complete Riemannian manifolds with straight ends. An important class of examples of such manifolds are complete Riemannian manifolds with pinched negative sectional curvature and finite volume.
This work is a continuation of the author’s previous paper [Greatest lower bounds on the Ricci curvature of toric Fano manifolds, Adv. Math. 226 (2011), 4921–4932]. On any toric Fano manifold, we discuss the behavior of the limit metric of a sequence of metrics which are solutions to a continuity family of complex Monge–Ampère equations in the Kähler–Einstein problem. We show that the limit metric satisfies a singular complex Monge–Ampère equation. This gives a conic-type singularity for the limit metric. Information on conic-type singularities can be read off from the geometry of the moment polytope.
We give a generalisation of the Cartan decomposition for connected compact Lie groups of type B motivated by the work on visible actions of Kobayashi [‘A generalized Cartan decomposition for the double coset space $(U(n_{1})\times U(n_{2})\times U(n_{3})) \backslash U(n)/ (U(p)\times U(q))$’, J. Math. Soc. Japan59 (2007), 669–691] for type A groups. Suppose that $G$ is a connected compact Lie group of type B, $\sigma $ is a Chevalley–Weyl involution and $L$, $H$ are Levi subgroups. First, we prove that $G=LG^{\sigma }H$ holds if and only if either (I) both $H$ and $L$ are maximal and of type A, or (II) $(G,H)$ is symmetric and $L$ is the Levi subgroup of an arbitrary maximal parabolic subgroup up to switching $H$ and $L$. This classification gives a visible action of $L$ on the generalised flag variety $G/H$, as well as that of the $H$-action on $G/L$ and of the $G$-action on $(G\times G)/(L\times H)$. Second, we find an explicit ‘slice’ $B$ with $\dim B=\mathrm {rank}\, G$ in case I, and $\dim B=2$ or $3$ in case II, such that a generalised Cartan decomposition $G=LBH$holds. An application to multiplicity-free theorems of representations is also discussed.
Let ℱ be a Kähler foliation on a compact Riemannian manifold M. If the transversal scalar curvature of ℱ is nonzero constant, then any transversal conformal field is a transversal Killing field; and if the transversal Ricci curvature is nonnegative and positive at some point, then there are no transversally holomorphic fields.