To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the Calabi–Yau equation can be solved on the Kodaira–Thurston manifold for all given T2-invariant volume forms. This provides support for Donaldson's conjecture that Yau's theorem has an extension to symplectic 4-manifolds with compatible but non-integrable almost complex structures.
We prove that all g-natural contact metric structures on a two-point homogeneous space are homogeneous contact. The converse is also proved for metrics of Kaluza–Klein type. We also show that if (M,g) is an Einstein manifold and is a Riemannian g-natural metric on T1M of Kaluza–Klein type, then is H-contact if and only if (M,g) is 2-stein, so proving that the main result of Chun et al. [‘H-contact unit tangent sphere bundles of Einstein manifolds’, Q. J. Math., to appear. DOI: 10.1093/qmath/hap025] is invariant under a two-parameter deformation of the standard contact metric structure on T1M. Moreover, we completely characterize Riemannian manifolds admitting two distinct H-contact g-natural contact metric structures, with associated metric of Kaluza–Klein type.
Let L → X be a positive line bundle on a compact complex manifold X. For compact submanifolds Y, S of X and a holomorphic submersion Y → S with compact fibre, we study curvature of a natural connection on certain line bundles on S.
As shown by Gluck in 1962, the diffeotopy group of S1×S2 is isomorphic to ℤ2⊕ℤ2⊕ℤ2. Here an alternative proof of this result is given, relying on contact topology. We then discuss two applications to contact topology: (i) it is shown that the fundamental group of the space of contact structures on S1×S2, based at the standard tight contact structure, is isomorphic to ℤ; (ii) inspired by previous work of Fraser, an example is given of an integer family of Legendrian knots in S1×S2#S1×S2 (with its standard tight contact structure) that can be distinguished with the help of contact surgery, but not by the classical invariants (topological knot type, Thurston–Bennequin invariant, and rotation number).
We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the works of P. Albers and P. Biran-O. Cornea) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties. The key ingredient is a theorem about the existence of best approximations of arbitrary elements of finitely generated free modules over Novikov rings by elements of prescribed submodules with respect to a certain family of non-Archimedean metrics.
We construct a Kähler structure (which we call a generalised Kähler cone) on an open subset of the cone of a strongly pseudo-convex CR manifold endowed with a one-parameter family of compatible Sasaki structures. We determine those generalised Kähler cones which are Bochner-flat and we study their local geometry. We prove that any Bochner-flat Kähler manifold of complex dimension bigger than two is locally isomorphic to a generalised Kähler cone.
We give a local normal form for Dirac structures. As a consequence, we show that the dimensions of the pre-symplectic leaves of a Dirac manifold have the same parity. We also show that, given a point m of a Dirac manifold M, there is a well-defined transverse Poisson structure to the pre-symplectic leaf P through m. Finally, we describe the neighborhood of a pre-symplectic leaf in terms of geometric data. This description agrees with that given by Vorobjev for the Poisson case.
We introduce the notion of an alternate product of Frobenius manifolds and we give, after Ciocan-Fontanine et al., an interpretation of the Frobenius manifold structure canonically attached to the quantum cohomology of G(r,n+1) in terms of alternate products. We also investigate the relationship with the alternate Thom–Sebastiani product of Laurent polynomials.
In this paper we describe the intersections between the balls of maximal symplectic packings of . This analysis shows the existence of singular points for maximal packings of by more than three equal balls. It also yields a construction of a class of very regular examples of maximal packings by five balls.
In this paper we construct a family of variational families for a Legendrian embedding, into the 1-jet bundle of a closed manifold, that can be obtained from the zero section through Legendrian embdeddings, by discretising the action functional. We compute the second variation of a generating funciton obtained as above at a nondegenerate critical point and prove a formula relating the signature of the second variation to the Maslov index as the mesh goes to zero. We use this to prove a generlisation of the Morse inequalities thus refining a theorem of Chekanov.