We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove some open book embedding results in the contact category with a constructive approach. As a consequence, we give an alternative proof of a theorem of Etnyre and Lekili that produces a large class of contact 3-manifolds admitting contact open book embeddings in the standard contact 5-sphere. We also show that all the Ustilovsky $(4m+1)$-spheres contact open book embed in the standard contact $(4m+3)$-sphere.
Let $(M,I,J,K,g)$ be a hyperkähler manifold. Then the complex manifold $(M,I)$ is holomorphic symplectic. We prove that for all real $x,y$, with $x^{2}+y^{2}=1$ except countably many, any finite-energy $(xJ+yK)$-holomorphic curve with boundary in a collection of $I$-holomorphic Lagrangians must be constant. By an argument based on the Łojasiewicz inequality, this result holds no matter how the Lagrangians intersect each other. It follows that one can choose perturbations such that the holomorphic polygons of the associated Fukaya category lie in an arbitrarily small neighborhood of the Lagrangians. That is, the Fukaya category is local. We show that holomorphic Lagrangians are tautologically unobstructed. Moreover, the Fukaya $A_{\infty }$ algebra of a holomorphic Lagrangian is formal. Our result also explains why the special Lagrangian condition holds without instanton corrections for holomorphic Lagrangians.
We study the higher genus equivariant Gromov–Witten theory of the Hilbert scheme of $n$ points of $\mathbb{C}^{2}$. Since the equivariant quantum cohomology, computed by Okounkov and Pandharipande [Invent. Math.179 (2010), 523–557], is semisimple, the higher genus theory is determined by an $\mathsf{R}$-matrix via the Givental–Teleman classification of Cohomological Field Theories (CohFTs). We uniquely specify the required $\mathsf{R}$-matrix by explicit data in degree $0$. As a consequence, we lift the basic triangle of equivalences relating the equivariant quantum cohomology of the Hilbert scheme $\mathsf{Hilb}^{n}(\mathbb{C}^{2})$ and the Gromov–Witten/Donaldson–Thomas correspondence for 3-fold theories of local curves to a triangle of equivalences in all higher genera. The proof uses the analytic continuation of the fundamental solution of the QDE of the Hilbert scheme of points determined by Okounkov and Pandharipande [Transform. Groups15 (2010), 965–982]. The GW/DT edge of the triangle in higher genus concerns new CohFTs defined by varying the 3-fold local curve in the moduli space of stable curves. The equivariant orbifold Gromov–Witten theory of the symmetric product $\mathsf{Sym}^{n}(\mathbb{C}^{2})$ is also shown to be equivalent to the theories of the triangle in all genera. The result establishes a complete case of the crepant resolution conjecture [Bryan and Graber, Algebraic Geometry–Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23–42; Coates et al., Geom. Topol.13 (2009), 2675–2744; Coates & Ruan, Ann. Inst. Fourier (Grenoble)63 (2013), 431–478].
We prove the genus-one restriction of the all-genus Landau–Ginzburg/Calabi–Yau conjecture of Chiodo and Ruan, stated in terms of the geometric quantization of an explicit symplectomorphism determined by genus-zero invariants. This gives the first evidence supporting the higher-genus Landau–Ginzburg/Calabi–Yau correspondence for the quintic $3$-fold, and exhibits the first instance of the ‘genus zero controls higher genus’ principle, in the sense of Givental’s quantization formalism, for non-semisimple cohomological field theories.
We study a class of flat bundles, of finite rank $N$, which arise naturally from the Donaldson–Thomas theory of a Calabi–Yau threefold $X$ via the notion of a variation of BPS structure. We prove that in a large $N$ limit their flat sections converge to the solutions to certain infinite-dimensional Riemann–Hilbert problems recently found by Bridgeland. In particular this implies an expression for the positive degree, genus 0 Gopakumar–Vafa contribution to the Gromov–Witten partition function of $X$ in terms of solutions to confluent hypergeometric differential equations.
In this paper we establish a version of homological mirror symmetry for punctured Riemann surfaces. Following a proposal of Kontsevich we model A-branes on a punctured surface $\unicode[STIX]{x1D6F4}$ via the topological Fukaya category. We prove that the topological Fukaya category of $\unicode[STIX]{x1D6F4}$ is equivalent to the category of matrix factorizations of a certain mirror LG model $(X,W)$. Along the way we establish new gluing results for the topological Fukaya category of punctured surfaces which are of independent interest.
We consider the stability of nonlinear travelling waves in a class of activator-inhibitor systems. The eigenvalue equation arising from linearizing about the wave is seen to preserve the manifold of Lagrangian planes for a nonstandard symplectic form. This allows us to define a Maslov index for the wave corresponding to the spatial evolution of the unstable bundle. We formulate the Evans function for the eigenvalue problem and show that the parity of the Maslov index determines the sign of the derivative of the Evans function at the origin. The connection between the Evans function and the Maslov index is established by a ‘detection form,’ which identifies conjugate points for the curve of Lagrangian planes.
We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 𝕊3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
Given a vector field on a manifold $M$, we define a globally conserved quantity to be a differential form whose Lie derivative is exact. Integrals of conserved quantities over suitable submanifolds are constant under time evolution, the Kelvin circulation theorem being a well-known special case. More generally, conserved quantities are well behaved under transgression to spaces of maps into $M$. We focus on the case of multisymplectic manifolds and Hamiltonian vector fields. Our main result is that in the presence of a Lie group of symmetries admitting a homotopy co-momentum map, one obtains a whole family of globally conserved quantities. This extends a classical result in symplectic geometry. We carry this out in a general setting, considering several variants of the notion of globally conserved quantity.
We generalize the higher rank rigidity theorem to a class of Finsler spaces, i.e. Berwald spaces. More precisely, we prove that a complete connected Berwald space of finite volume and bounded non-positive flag curvature with rank at least two whose universal cover is irreducible is a locally symmetric space or a locally Minkowski space.
In this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.
Let $Q$ be a closed manifold admitting a locally free action of a compact Lie group $G$. In this paper, we study the properties of geodesic flows on $Q$ given by suitable G-invariant Riemannian metrics. In particular, we will be interested in the existence of geodesics that are closed up to the action of some element in the group $G$, since they project to closed magnetic geodesics on the quotient orbifold $Q/G$.
We consider compact Kählerian manifolds $X$ of even dimension 4 or more, endowed with a log-symplectic holomorphic Poisson structure $\unicode[STIX]{x1D6F1}$ which is sufficiently general, in a precise linear sense, with respect to its (normal-crossing) degeneracy divisor $D(\unicode[STIX]{x1D6F1})$. We prove that $(X,\unicode[STIX]{x1D6F1})$ has unobstructed deformations, that the tangent space to its deformation space can be identified in terms of the mixed Hodge structure on $H^{2}$ of the open symplectic manifold $X\setminus D(\unicode[STIX]{x1D6F1})$, and in fact coincides with this $H^{2}$ provided the Hodge number $h_{X}^{2,0}=0$, and finally that the degeneracy locus $D(\unicode[STIX]{x1D6F1})$ deforms locally trivially under deformations of $(X,\unicode[STIX]{x1D6F1})$.
We construct a dynamically convex contact form on the three-sphere whose systolic ratio is arbitrarily close to 2. This example is related to a conjecture of Viterbo, whose validity would imply that the systolic ratio of a convex contact form does not exceed 1. We also construct, for every integer $n\geqslant 2$, a tight contact form with systolic ratio arbitrarily close to $n$ and with suitable bounds on the mean rotation number of all the closed orbits of the induced Reeb flow.
This paper introduces a new Lagrangian surgery construction that generalizes Lalonde–Sikorav and Polterovich’s well-known construction, and combines this with Biran and Cornea’s Lagrangian cobordism formalism. With these techniques, we build a framework which both recovers several known long exact sequences (Seidel’s exact sequence, including the fixed point version and Wehrheim and Woodward’s family version) in symplectic geometry in a uniform way, and yields a partial answer to a long-term open conjecture due to Huybrechts and Thomas; this also involved a new observation which relates projective twists with surgeries.
In this paper we study three-dimensional contact metric manifolds satisfying $\Vert \unicode[STIX]{x1D70F}\Vert =\text{constant}$. The local description, as well as several global results and new examples of such manifolds are given.
We study the derived Hall algebra of the partially wrapped Fukaya category of a surface. We give an explicit description of the Hall algebra for the disk with $m$ marked intervals and we give a conjectural description of the Hall algebras of all surfaces with enough marked intervals. Then we use a functoriality result to show that a graded version of the HOMFLY-PT skein relation holds among certain arcs in the Hall algebras of general surfaces.
Given a smooth compact surface without focal points and of higher genus, it is shown that its geodesic flow is semi-conjugate to a continuous expansive flow with a local product structure such that the semi-conjugation preserves time parametrization. It is concluded that the geodesic flow has a unique measure of maximal entropy.
Let $n>3$, and let $L$ be a Lagrangian embedding of $\mathbb{R}^{n}$ into the cotangent bundle $T^{\ast }\mathbb{R}^{n}$ of $\mathbb{R}^{n}$ that agrees with the cotangent fiber $T_{x}^{\ast }\mathbb{R}^{n}$ over a point $x\neq 0$ outside a compact set. Assume that $L$ is disjoint from the cotangent fiber at the origin. The projection of $L$ to the base extends to a map of the $n$-sphere $S^{n}$ into $\mathbb{R}^{n}\setminus \{0\}$. We show that this map is homotopically trivial, answering a question of Eliashberg. We give a number of generalizations of this result, including homotopical constraints on embedded Lagrangian disks in the complement of another Lagrangian submanifold, and on two-component links of immersed Lagrangian spheres with one double point in $T^{\ast }\mathbb{R}^{n}$, under suitable dimension and Maslov index hypotheses. The proofs combine techniques from Ekholm and Smith [Exact Lagrangian immersions with a single double point, J. Amer. Math. Soc. 29 (2016), 1–59] and Ekholm and Smith [Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), 195–240] with symplectic field theory.