To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $Q$ be a closed manifold admitting a locally free action of a compact Lie group $G$. In this paper, we study the properties of geodesic flows on $Q$ given by suitable G-invariant Riemannian metrics. In particular, we will be interested in the existence of geodesics that are closed up to the action of some element in the group $G$, since they project to closed magnetic geodesics on the quotient orbifold $Q/G$.
We consider compact Kählerian manifolds $X$ of even dimension 4 or more, endowed with a log-symplectic holomorphic Poisson structure $\unicode[STIX]{x1D6F1}$ which is sufficiently general, in a precise linear sense, with respect to its (normal-crossing) degeneracy divisor $D(\unicode[STIX]{x1D6F1})$. We prove that $(X,\unicode[STIX]{x1D6F1})$ has unobstructed deformations, that the tangent space to its deformation space can be identified in terms of the mixed Hodge structure on $H^{2}$ of the open symplectic manifold $X\setminus D(\unicode[STIX]{x1D6F1})$, and in fact coincides with this $H^{2}$ provided the Hodge number $h_{X}^{2,0}=0$, and finally that the degeneracy locus $D(\unicode[STIX]{x1D6F1})$ deforms locally trivially under deformations of $(X,\unicode[STIX]{x1D6F1})$.
We construct a dynamically convex contact form on the three-sphere whose systolic ratio is arbitrarily close to 2. This example is related to a conjecture of Viterbo, whose validity would imply that the systolic ratio of a convex contact form does not exceed 1. We also construct, for every integer $n\geqslant 2$, a tight contact form with systolic ratio arbitrarily close to $n$ and with suitable bounds on the mean rotation number of all the closed orbits of the induced Reeb flow.
This paper introduces a new Lagrangian surgery construction that generalizes Lalonde–Sikorav and Polterovich’s well-known construction, and combines this with Biran and Cornea’s Lagrangian cobordism formalism. With these techniques, we build a framework which both recovers several known long exact sequences (Seidel’s exact sequence, including the fixed point version and Wehrheim and Woodward’s family version) in symplectic geometry in a uniform way, and yields a partial answer to a long-term open conjecture due to Huybrechts and Thomas; this also involved a new observation which relates projective twists with surgeries.
In this paper we study three-dimensional contact metric manifolds satisfying $\Vert \unicode[STIX]{x1D70F}\Vert =\text{constant}$. The local description, as well as several global results and new examples of such manifolds are given.
We study the derived Hall algebra of the partially wrapped Fukaya category of a surface. We give an explicit description of the Hall algebra for the disk with $m$ marked intervals and we give a conjectural description of the Hall algebras of all surfaces with enough marked intervals. Then we use a functoriality result to show that a graded version of the HOMFLY-PT skein relation holds among certain arcs in the Hall algebras of general surfaces.
Given a smooth compact surface without focal points and of higher genus, it is shown that its geodesic flow is semi-conjugate to a continuous expansive flow with a local product structure such that the semi-conjugation preserves time parametrization. It is concluded that the geodesic flow has a unique measure of maximal entropy.
Let $n>3$, and let $L$ be a Lagrangian embedding of $\mathbb{R}^{n}$ into the cotangent bundle $T^{\ast }\mathbb{R}^{n}$ of $\mathbb{R}^{n}$ that agrees with the cotangent fiber $T_{x}^{\ast }\mathbb{R}^{n}$ over a point $x\neq 0$ outside a compact set. Assume that $L$ is disjoint from the cotangent fiber at the origin. The projection of $L$ to the base extends to a map of the $n$-sphere $S^{n}$ into $\mathbb{R}^{n}\setminus \{0\}$. We show that this map is homotopically trivial, answering a question of Eliashberg. We give a number of generalizations of this result, including homotopical constraints on embedded Lagrangian disks in the complement of another Lagrangian submanifold, and on two-component links of immersed Lagrangian spheres with one double point in $T^{\ast }\mathbb{R}^{n}$, under suitable dimension and Maslov index hypotheses. The proofs combine techniques from Ekholm and Smith [Exact Lagrangian immersions with a single double point, J. Amer. Math. Soc. 29 (2016), 1–59] and Ekholm and Smith [Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), 195–240] with symplectic field theory.
Varieties of the form $G\times S_{\!\text{reg}}$, where $G$ is a complex semisimple group and $S_{\!\text{reg}}$ is a regular Slodowy slice in the Lie algebra of $G$, arise naturally in hyperkähler geometry, theoretical physics and the theory of abstract integrable systems. Crooks and Rayan [‘Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices’, Math. Res. Let., to appear] use a Hamiltonian $G$-action to endow $G\times S_{\!\text{reg}}$ with a canonical abstract integrable system. To understand examples of abstract integrable systems arising from Hamiltonian $G$-actions, we consider a holomorphic symplectic variety $X$ carrying an abstract integrable system induced by a Hamiltonian $G$-action. Under certain hypotheses, we show that there must exist a $G$-equivariant variety isomorphism $X\cong G\times S_{\!\text{reg}}$.
In this paper, we relate Lie algebroids to Costello’s version of derived geometry. For instance, we show that each Lie algebroid – and the natural generalization to dg Lie algebroids – provides an (essentially unique) $L_{\infty }$ space. More precisely, we construct a faithful functor from the category of Lie algebroids to the category of $L_{\infty }$ spaces. Then we show that for each Lie algebroid $L$, there is a fully faithful functor from the category of representations up to homotopy of $L$ to the category of vector bundles over the associated $L_{\infty }$ space. Indeed, this functor sends the adjoint complex of $L$ to the tangent bundle of the $L_{\infty }$ space. Finally, we show that a shifted symplectic structure on a dg Lie algebroid produces a shifted symplectic structure on the associated $L_{\infty }$ space.
This paper proves the existence of potentials of the first and second kind of a Frobenius like structure in a frame, which encompasses families of arrangements. The frame uses the notion of matroids. For the proof of the existence of the potentials, a power series ansatz is made. The proof that it works requires that certain decompositions of tuples of coordinate vector fields are related by certain elementary transformations. This is shown with a nontrivial result on matroid partition.
Barannikov and Kontsevich [Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. IMRN1998(4) (1998), 201–215], constructed a DGBV (differential Gerstenhaber–Batalin–Vilkovisky) algebra $\mathbf{t}$ for a compact smooth Calabi–Yau complex manifold $M$ of dimension $m$, which gives rise to the $B$-side formal Frobenius manifold structure in the homological mirror symmetry conjecture. The cohomology of the DGBV algebra $\mathbf{t}$ is isomorphic to the total singular cohomology $H^{\bullet }(M)=\bigoplus _{k=0}^{2m}H^{k}(M,\mathbb{C})$ of $M$. If $M=X_{G}(\mathbb{C})$, where $X_{G}$ is the hypersurface defined by a homogeneous polynomial $G(\text{}\underline{x})$ in the projective space $\mathbb{P}^{n}$, then we give a purely algorithmic construction of a DGBV algebra ${\mathcal{A}}_{U}$, which computes the primitive part $\bigoplus _{k=0}^{m}\mathbf{PH}^{k}$ of the middle-dimensional cohomology $\bigoplus _{k=0}^{m}H^{k}(M,\mathbb{C})$, using the de Rham cohomology of the hypersurface complement $U_{G}:=\mathbb{P}^{n}\setminus X_{G}$ and the residue isomorphism from $H_{\text{dR}}^{k}(U_{G}/\mathbb{C})$ to $\mathbf{PH}^{k}$. We observe that the DGBV algebra ${\mathcal{A}}_{U}$ still makes sense even for a singular projective Calabi–Yau hypersurface, i.e. ${\mathcal{A}}_{U}$ computes $\bigoplus _{k=0}^{m}H_{\text{dR}}^{k}(U_{G}/\mathbb{C})$ even for a singular $X_{G}$. Moreover, we give a precise relationship between ${\mathcal{A}}_{U}$ and $\mathbf{t}$ when $X_{G}$ is smooth in $\mathbf{P}^{n}$.
We use Hamiltonian Floer theory to recover and generalize a classic rigidity theorem of Ekeland and Lasry. That theorem can be rephrased as an assertion about the existence of multiple closed Reeb orbits for certain tight contact forms on the sphere that are close, in a suitable sense, to the standard contact form. We first generalize this result to Reeb flows of contact forms on prequantization spaces that are suitably close to Boothby–Wang forms. We then establish, under an additional nondegeneracy assumption, the same rigidity phenomenon for Reeb flows on any closed contact manifold. A natural obstruction to obtaining sharp multiplicity results for closed Reeb orbits is the possible existence of fast closed orbits. To complement the existence results established here, we also show that the existence of such fast orbits cannot be precluded by any condition which is invariant under contactomorphisms, even for nearby contact forms.
In this paper we study holomorphic Legendrian curves in the standard holomorphic contact structure on $\mathbb{C}^{2n+1}$ for any $n\in \mathbb{N}$. We provide several approximation and desingularization results which enable us to prove general existence theorems, settling some of the open problems in the subject. In particular, we show that every open Riemann surface $M$ admits a proper holomorphic Legendrian embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$, and we prove that for every compact bordered Riemann surface $M={M\unicode[STIX]{x0030A}}\,\cup \,bM$ there exists a topological embedding $M{\hookrightarrow}\mathbb{C}^{2n+1}$ whose restriction to the interior is a complete holomorphic Legendrian embedding ${M\unicode[STIX]{x0030A}}{\hookrightarrow}\mathbb{C}^{2n+1}$. As a consequence, we infer that every complex contact manifold $W$ carries relatively compact holomorphic Legendrian curves, normalized by any given bordered Riemann surface, which are complete with respect to any Riemannian metric on $W$.
We apply the spectral curve topological recursion to Dubrovin’s universal Landau–Ginzburg superpotential associated to a semi-simple point of any conformal Frobenius manifold. We show that under some conditions the expansion of the correlation differentials reproduces the cohomological field theory associated with the same point of the initial Frobenius manifold.
A log symplectic manifold is a complex manifold equipped with a complex symplectic form that has simple poles on a hypersurface. The possible singularities of such a hypersurface are heavily constrained. We introduce the notion of an elliptic point of a log symplectic structure, which is a singular point at which a natural transversality condition involving the modular vector field is satisfied, and we prove a local normal form for such points that involves the simple elliptic surface singularities $\widetilde{E}_{6},\widetilde{E}_{7}$ and $\widetilde{E}_{8}$. Our main application is to the classification of Poisson brackets on Fano fourfolds. For example, we show that Feigin and Odesskii’s Poisson structures of type $q_{5,1}$ are the only log symplectic structures on projective four-space whose singular points are all elliptic.
If $(G,V)$ is a polar representation with Cartan subspace $\mathfrak{c}$ and Weyl group $W$, it is shown that there is a natural morphism of Poisson schemes $\mathfrak{c}\oplus \mathfrak{c}^{\ast }/W\rightarrow V\oplus V^{\ast }/\!\!/\!\!/G$. This morphism is conjectured to be an isomorphism of the underlying reduced varieties if$(G,V)$ is visible. The conjecture is proved for visible stable locally free polar representations and some other examples.
In this paper, we determine the group of contact transformations modulo contact isotopies for Legendrian circle bundles over closed surfaces of non-positive Euler characteristic. These results extend and correct those presented by the first author in a former work. The main ingredient we use is connectedness of certain spaces of embeddings of surfaces into contact 3-manifolds. This connectedness question is also studied for itself with a number of (hopefully instructive) examples.
In this paper, we consider contact metric three-manifolds $(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$ which satisfy the condition $\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$ for some smooth functions $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$, where $2h=\unicode[STIX]{x00A3}_{\unicode[STIX]{x1D709}}\unicode[STIX]{x1D711}$. We prove that if $M$ is conformally flat and if $\unicode[STIX]{x1D707}$ is constant, then $M$ is either a flat manifold or a Sasakian manifold of constant curvature $+1$. We cannot extend this result for a smooth function $\unicode[STIX]{x1D707}$. Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature.