To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through odd (or more general) points. Following categorical principles, we derive a conceptual framework for their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups and orbits through general points. In this setting, we show that the coadjoint orbits always admit a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an odd direct integral of characters and construct universal families of representations, parametrised by a supermanifold, for two different super variants of the Heisenberg group.
This paper develops the theory of multisymplectic variational integrators for nonsmooth continuum mechanics with constraints. Typical problems are the impact of an elastic body on a rigid plate or the collision of two elastic bodies. The integrators are obtained by combining, at the continuous and discrete levels, the variational multisymplectic formulation of nonsmooth continuum mechanics with the generalized Lagrange multiplier approach for optimization problems with nonsmooth constraints. These integrators verify a spacetime multisymplectic formula that generalizes the symplectic property of time integrators. In addition, they preserve the energy during the impact. In the presence of symmetry, a discrete version of the Noether theorem is verified. All these properties are inherited from the variational character of the integrator. Numerical illustrations are presented.
We study Hamiltonian diffeomorphisms of closed symplectic manifolds with non-contractible periodic orbits. In a variety of settings, we show that the presence of one non-contractible periodic orbit of a Hamiltonian diffeomorphism of a closed toroidally monotone or toroidally negative monotone symplectic manifold implies the existence of infinitely many non-contractible periodic orbits in a specific collection of free homotopy classes. The main new ingredient in the proofs of these results is a filtration of Floer homology by the so-called augmented action. This action is independent of capping and, under favorable conditions, the augmented action filtration for toroidally (negative) monotone manifolds can play the same role as the ordinary action filtration for atoroidal manifolds.
We give various realizations of the adjoint orbits of a semi-simple Lie group and describe their symplectic geometry. We then use these realizations to identify a family of Lagrangian submanifolds of the orbits.
We define an invariant of contact 3-manifolds with convex boundary using Kronheimer and Mrowka’s sutured monopole Floer homology theory ($SHM$). Our invariant can be viewed as a generalization of Kronheimer and Mrowka’s contact invariant for closed contact 3-manifolds and as the monopole Floer analogue of Honda, Kazez, and Matić’s contact invariant in sutured Heegaard Floer homology ($SFH$). In the process of defining our invariant, we construct maps on $SHM$ associated to contact handle attachments, analogous to those defined by Honda, Kazez, and Matić in $SFH$. We use these maps to establish a bypass exact triangle in $SHM$ analogous to Honda’s in $SFH$. This paper also provides the topological basis for the construction of similar gluing maps in sutured instanton Floer homology, which are used in Baldwin and Sivek [Selecta Math. (N.S.), 22(2) (2016), 939–978] to define a contact invariant in the instanton Floer setting.
We suggest a way to quantize, using Berezin–Toeplitz quantization, a compact hyperkähler manifold (equipped with a natural 3-plectic form), or a compact integral Kähler manifold of complex dimension n regarded as a (2n−1)-plectic manifold. We show that quantization has reasonable semiclassical properties.
An affine symplectic singularity $X$ with a good $\mathbf{C}^{\ast }$-action is called a conical symplectic variety. In this paper we prove the following theorem. For fixed positive integers $N$ and $d$, there are only a finite number of conical symplectic varieties of dimension $2d$ with maximal weights $N$, up to an isomorphism. To prove the main theorem, we first relate a conical symplectic variety with a log Fano Kawamata log terminal (klt) pair, which has a contact structure. By the boundedness result for log Fano klt pairs with fixed Cartier index, we prove that conical symplectic varieties of a fixed dimension and with a fixed maximal weight form a bounded family. Next we prove the rigidity of conical symplectic varieties by using Poisson deformations.
Building on Seidel and Solomon’s fundamental work [Symplectic cohomology and$q$-intersection numbers, Geom. Funct. Anal. 22 (2012), 443–477], we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M$, where $\mathfrak{g}\subset SH^{1}(M)$ is a sub-Lie algebra of the symplectic cohomology of $M$. When $M$ is a (symplectic) mirror to an (algebraic) homogeneous space $G/P$, homological mirror symmetry predicts that there is an embedding of $\mathfrak{g}$ in $SH^{1}(M)$. This allows us to study a mirror theory to classical constructions of Borel, Weil and Bott. We give explicit computations recovering all finite-dimensional irreducible representations of $\mathfrak{sl}_{2}$ as representations on the Floer cohomology of an $\mathfrak{sl}_{2}$-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.
In this article we prove that the Weinstein conjecture holds for contact manifolds $({\rm\Sigma},{\it\xi})$ for which $\text{Cont}_{0}({\rm\Sigma},{\it\xi})$ is non-orderable in the sense of Eliashberg and Polterovich [Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000), 1448–1476]. More precisely, we establish a link between orderable and hypertight contact manifolds. In addition, we prove for certain contact manifolds a conjecture by Sandon [A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata 165 (2013), 95–110] on the existence of translated points in the non-degenerate case.
The aim of the present paper is the classification of real hypersurfaces M equipped with the condition Al = lA, l = R(., ξ)ξ, restricted in a subspace of the tangent space TpM of M at a point p. This class is large and difficult to classify, therefore a second condition is imposed: (∇ξl)X = ω(X)ξ + ψ(X)lX, where ω(X), ψ(X) are 1-forms. The last condition is studied for the first time and is much weaker than ∇ξl = 0 which has been studied so far. The Jacobi Structure Operator satisfying this weaker condition can be called generalized ξ-parallel Jacobi Structure Operator.
Suppose that a complex manifold M is locally embedded into a higher-dimensional neighbourhood as a submanifold. We show that, if the local neighbourhood germs are compatible in a suitable sense, then they glue together to give a global neighbourhood of M. As an application, we prove a global version of Hertling–Manin's unfolding theorem for germs of TEP structures; this has applications in the study of quantum cohomology.
The Kodaira–Thurston manifold is a quotient of a nilpotent Lie group by a cocompact lattice. We compute the family Gromov–Witten invariants which count pseudoholomorphic tori in the Kodaira–Thurston manifold. For a fixed symplectic form the Gromov–Witten invariant is trivial so we consider the twistor family of left-invariant symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This family defines a loop in the space of symplectic forms. This is the first example of a genus one family Gromov–Witten computation for a non-Kähler manifold.
We prove a Givental-style mirror theorem for toric Deligne–Mumford stacks ${\mathcal{X}}$. This determines the genus-zero Gromov–Witten invariants of ${\mathcal{X}}$ in terms of an explicit hypergeometric function, called the $I$-function, that takes values in the Chen–Ruan orbifold cohomology of ${\mathcal{X}}$.
We present a reconstruction theorem for Fano vector bundles on projective space which recovers the small quantum cohomology for the projectivization of the bundle from a small number of low-degree Gromov-Witten invariants. We provide an extended example in which we calculate the quantum cohomology of a certain Fano 9-fold and deduce from this, using the quantum Lefschetz theorem, the quantum period sequence for a Fano 3-fold of Picard rank 2 and degree 24. This example is new, and is important for the Fanosearch program.
We consider the problem of deforming simultaneously a pair of given structures. We show that such deformations are governed by an $L_{\infty }$-algebra, which we construct explicitly. Our machinery is based on Voronov’s derived bracket construction. In this paper we consider only geometric applications, including deformations of coisotropic submanifolds in Poisson manifolds, of twisted Poisson structures, and of complex structures within generalized complex geometry. These applications cannot be, to our knowledge, obtained by other methods such as operad theory.
We find a non-displaceable Lagrangian torus fiber in a semi-toric system which is superheavy with respect to a certain symplectic quasi-state. The proof employs both 4-dimensional techniques and those from symplectic field theory. In particular, our result implies Lagrangian $\mathbb{R}P^{2}$ is not a stem in $\mathbb{C}P^{2}$, answering a question of Entov and Polterovich.
The following Chen's bi-harmonic conjecture made in 1991 is well-known and stays open: The only bi-harmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we prove that the bi-harmonic conjecture is true for bi-harmonic hypersurfaces with three distinct principal curvatures of a Euclidean space of arbitrary dimension.
Any singular level of a completely integrable system (c.i.s.) with non-degenerate singularities has a singular affine structure. We shall show how to construct a simple c.i.s. around the level, having the above affine structure. The cotangent bundle of the desingularized level is used to perform the construction, and the c.i.s. obtained looks like the simplest one associated to the affine structure. This method of construction is used to provide several examples of c.i.s. with different kinds of non-degenerate singularities.
Given the pair (P, η) of (0,2) tensors, where η defines a volume element, we consider a new variational problem varying η only. We then have Einstein metrics and slant immersions as critical points of the 1st variation. We may characterize Ricci flat metrics and Lagrangian submanifolds as stable critical points of our variational problem.