To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let S(p) be the family of holomorphic functions f defined on the unit disk D, normalized by f(0) = f1(0) – 1 = 0 and univalent in every hyperbolic disk of radius p. Let C(p) be the subfamily consisting of those functions which are convex univalent in every hyperbolic disk of radius p. For p = ∞ these become the classical families S and C of normalized univalent and convex functions, respectively. These families are linearly invariant in the sense of Pommerenke; a natural problem is to calculate the order of these linearly invariant families. More precisely, we give a geometrie proof that C(p) is the universal linearly invariant family of all normalized locally schlicht functions of order at most coth(2p). This gives a purely geometric interpretation for the order of a linearly invariant family. In a related matter, we characterize those locally schlicht functions which map each hyperbolically k-convex subset of D onto a euclidean convex set. Finally, we give upper and lower bounds on the order of the linearly invariant family S(p) and prove that this class is not equal to the universal linearly invariant family of any order.
Abstract. Let Φ be in the disc algebra H∞ ∩ C(T) with its restriction to T in the Zygmund space of smooth functions λ*(T). If P(Φ') ⊂ T is the set of Plessner points of Φ' and if F = Φ + Ψ, where Ψ∈C1(T), it is shown that F(P(Φ')) ⊆ C is a set of zero linear Hausdorff measure. Applications are given to the spectral theory of multiplication operators.
Let R(z, w) be a rational function of w with meromorphic coefficients. It is shown that if the Schwarzian equation possesses an admissible solution, then , where αj, are distinct complex constants. In particular, when R(z, w) is independent of z, it is shown that if (*) possesses an admissible solution w(z), then by some Möbius transformation u = (aw + b) / (cw + d) (ad – bc ≠ 0), the equation can be reduced to one of the following forms: where τj (j = 1, … 4) are distinct constants, and σj (j = 1, … 4) are constants, not necessarily distinct.
We answer two conjectures suggested by Zalman Rubinstein. We prove his Conjecture 1, that is, we construct convergent iterative sequences for with an arbitrary initial point, where with m ≥ 2. We also show by several counterexamples that Rubinstein's Conjecture 2 is generally false.
Suppose that f(z) is non-constant and meromorphic in the plane and that, for some k≥= 1, a0(z),…, ak(z) are meromorphic in the plane with
for j' = 0,…, k. Here, using standard notation from [3], S(r,f) denotes any quantity satisfying S(r,f) = o(T(r,f)) as r→ ∞, possibly outside a set of finite linear measure. Then, setting
we have ([3, p. 57])
Theorem A. Suppose that f(z) is non-constant and meromorphic in the plane, and thatψ (z) given by (1.2) and (1.1) and is non-constant. Then
where N0(r, l/ψ') counts only zeros of ψ' which are not zeros of ψ − 1, and thecounting functions count points without regard to multiplicity.
For a non-constant entire or rational function f normalized by f(0) = 0, f′(0) = 1, f″(0) ≠ 0, which is not a Möbius tranformation, the existence of a sequence is established which has the properties . The result certainly implies f(0)= |f(0)|= 1, so these conditions cannot be omitted. The condition f″ (0)≠ 0 can be replaced by f(k)(0) ≠ 0 for some k ≥ 2.
The iterative behaviour of polynomials is contrasted with that of small transcendental functions as regards the existence of unbounded domains of normality for the sequence of iterates.