We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main purpose of this paper is to prove difference and q-difference counterparts of the Clunie lemma from the Nevanlinna theory of differential polynomials, where the difference and q-difference polynomials can contain many terms of maximal total degree in f(z) and its ( q-)shifts.
It is shown that if f is an analytic function of sufficiently small exponential type in the right half-plane, which takes integer values on a subset of the positive integers having positive lower density, then f is a polynomial.
Let ℱ be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least k+1. Let a and b be distinct finite complex numbers, and let k be a positive integer. If, for each pair of functions f and g in ℱ, f(k) and g(k) share the set S={a,b}, then ℱ is normal in D. The condition that the zeros of functions in ℱ have multiplicity at least k+1 cannot be weakened.
We complete the investigation of growth properties of analytic functions connected with the Nevanlinna parametrization of the solutions of an indeterminate strong Hamburger moment problem.
We prove that if two transcendental meromorphic functions share all limit values from a set of positive linear measure on a rectifiable Jordan arc, then they share all limit values.
Functions in the meromorphic Besov, Qp and related classes are characterized in terms of double integrals of certain oscillation quantities involving chordal distances. Some of the results are analogous to the corresponding results in the analytic case.
Let F(z) be a rational map with degree at least three. Suppose that there exists an annulus such that (1) H separates two critical points of F, and (2) F:H→F(H) is a homeomorphism. Our goal in this paper is to show how to construct a rational map G by twisting F on H such that G has the same degree as F and, moreover, G has a Herman ring with any given Diophantine type rotation number.
Using Ahlfors’ theory of covering surfaces, we prove the existence theorem for the T direction for algebroid functions dealing with multiple values which extends the results proved by Guo, Zheng and Ng and answers a question by Wang, Giao and the present authors.
We prove that under a sharp growth condition meromorphic functions posses a direction such that at most four rational functions are completely ramified in any sector containing the direction.
Let f and g be two permutable transcendental entire functions. Assume that f is a solution of a linear differential equation with polynomial coefficients. We prove that, under some restrictions on the coefficients and the growth of f and g, there exist two non-constant rational functions R1 and R2 such that R1 (f) = R(g). As a corollary, we show that f and g have the same Julia set: J(f) = J(g). As an application, we study a function f which is a combination of exponential functions with polynomial coefficients. This research addresses an open question due to Baker.
In this paper we treat transcendental meromorphic solutions of some algebraic differential equations. We consider the number of distinct transcendental meromorphic solutions. Algebraic relations between meromorphic solutions and comparisons of the growth of transcendental meromorphic solutions are also discussed.
We consider a meromorphic function of finite lower order that has ∞ as its deficient value or as its Borel exceptional value. We prove that the set of limiting directions of its Julia set must have a definite range of measure.
For 0 < p < ∞, we let pp−1 denote the space of those functions f that are analytic in the unit disc Δ = {z ∈ C: |z| < 1} and satisfy ∫Δ(1 – |z|)p−1|f′(z)|pdx dy < ∞ The spaces pp−1 are closely related to Hardy spaces. We have, p−1p ⊂ Hp, if 0 < p ≦ 2, and Hp ⊂ pp−1, if 2 ≦ p < ∞. In this paper we obtain a number of results about the Taylor coefficients of pp-1 -functions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.
This paper presents two natural extensions of the topology of the space of scalar meromorphic functions M(Ω) described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic functions M(ΩE). When E is locally complete and does not contain copies of ω we compare these topologies with the topology induced by the representation M (Ω, E) ≃ M(Ω)ε E recently obtained by Bonet, Maestre and the author.
In 1959 Hayman proved an inequality from which it follows that if f is transcendental and meromorphic in the plane then either f takes every finite complex value infinitely often or each derivative f(k), k ≥1, takes every finite non-zero value infinitely often. We investigate the extent to which these values may be ramified, and we establish a generalization of Hayman's inequality in which multiplicities are not taken into account.
In this paper, we prove that for a transcendental meromorphic function f(z) on the complex plane, the inequality T(r, f) < 6N (r, 1/(f2 f(k)−1)) + S(r, f) holds, where k is a positive integer. Moreover, we prove the following normality criterion: Let ℱ be a family of meromorphic functions on a domain D and let k be a positive integer. If for each ℱ ∈ ℱ, all zeros of ℱ are of multiplicity at least k, and f2 f(k) ≠ 1 for z ∈ D, then ℱ is normal in the domain D. At the same time we also show that the condition on multiple zeros of f in the normality criterion is necessary.
In this paper we continue our previous studies and derive all possible expressions for a meromorphic function and its differential polunomials when they share two finite distinct values a1, a2, CM (counting multiplicities) in majority.
In this paper, we obtain some normality criteria for families of meromorphic functions that concern the exceptional functions of derivatives, which improve and generalize related results of Gu, Yang, Schwick, Wang-Fang, and Pang-Zalcman. Some examples are given to show the sharpness of our results.
Let k be a positive integer and b a nonzero constant. Suppose that F is a family of meromorphic functions in a domain D. If each function f ∈ F has only zeros of multiplicity at least k + 2 and for any two functions f, g ∈ F, f and g share 0 in D and f(k) and g(k) share b in D, then F is normal in D. The case f ≠ 0, f(k) ≠ b is a celebrated result of Gu.